Logan Creek Stream Restoration Project Year 3 Monitoring Report

Jackson County, North Carolina NCDMS Project ID No. 92515; Contract No. D06046-A Savannah River Basin: 03060101-010020

DWR # 20080879 Ver. 2, SAW ID: 2008-01711

Project Info: Monitoring Year: 3 of 5

Year of Data Collection: 2017

Year of Completed Construction: May 2015

Submission Date: December 2017

Submitted To: NCDEQ – Division of Mitigation Services

5 Ravenscroft Drive, Suite 102

Asheville, NC 28801

NCDEQ Contract ID No. D06046-A

December 11, 2017

NCDENR - Division of Mitigation Services (DMS) Attn: Mr. Paul Wiesner, Western Project Management Supervisor 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801

Subject: Response to DMS comments on the Year 3 Monitoring Report Review for the Logan

Creek Stream Restoration Project; Savannah River Basin - CU# 03060101; Jackson

County, North Carolina; NCDMS Project # 92515; Contract No. D06046-A

Dear Mr. Wiesner,

Please find enclosed the final Logan Creek Year 3 Monitoring Report. We have addressed the comments that you sub mitted on the draft report and our responses to your comments are the following:

• The 2013 project mitigation plan proposed 4,249 SMUs and did not include UT 7 and UT8. The As-Built Baseline (MY0) report indicates 4,329 SMUs and the MY3 report indicates 4,327 SMUs. The IRT did not review the 2013 mitigation plan and most of the IRT members have not been to the project site. During MY2, DWR staff noted concerns about adding UT7 and UT8 after the mitigation plan stage. DMS recommends scheduling an IRT site visit to see the site in 2018 (MY4) and resolve any potential credit issues prior to project closeout. DMS can help facilitate this IRT site visit.

The footage and SMUs for the As-built-MY0 and MY1 report were the same based on the post construction survey when we determined the actual footage. Last year in the MY2 report, we reduced these numbers slightly because the landowner installed a foot-bridge crossing that had been removed during construction, so MY2 and MY3 have consistent figures. We agree that a meeting with the IRT early in 2018 could be helpful in addressing any concerns that they may have about this project.

- Please be sure to describe the 2018 structure repair efforts in the MY4/2018 monitoring report. We will describe any repairs made in 2018 in the MY4 report.
- Please be sure the MY3 invoice for contract D06046-A matches the credits presented in the final MY3 report (4,327 SMUs).

The invoice for Task 9 is based on 4,327 SMUs and the total fee requested reflects a credit applied for over-payment from previous years due to those invoices being based on a larger contract value.

• Table 1 – Asterisks are shown for Logan Creek (Reach 1) and UT 5; however, no foot notes are included in the table. Please update the table with the appropriate footnotes. There should be no footnotes for this year and the asterisks were removed.

• Table 2 – The second footnote has three asterisks but should only have two based on the "End of Construction" row.

The additional asterisk was removed.

• Table 10 – The MY3 column is mislabeled for UT6 & UT8. Please update accordingly. *The mislabeled headers have been changed.*

If you have any questions or find any issues that need to be addressed, please contact me directly at (828) 412-6100. I am submitting an invoice for this task to Ms. Debby Davis in the Raleigh DMS Office and will be providing you an email copy.

Sincerely,

Micky Clemmons, Project Manager

Michael Baker Engineering, Inc.

Logan Creek Stream Restoration Project Year 3 Monitoring Report

Jackson County, North Carolina NCDMS Project ID Number – 92515

Report Prepared and Submitted by Michael Baker Engineering, Inc. 797 Haywood Road, Suite 201 Asheville, NC 28806

NC Professional Engineering License # F-1084

TABLE OF CONTENTS

					RY
2.1	Vegetai	tion A	ssessment		4
2.2.2 2.2.3	Morph Hydro Photog	ologi logy . graph	ic Paramete	ers and ntation	Channel Stability
					APPENDICES
Appen	ıdix	A	Project	Vicini	ty Map and Background Tables
			Figure	1	Project Vicinity Map and Directions
			Figure	2	Current Conditions Plan View – Overview Map, MY3
			Figure	2A	CCPV MY3, North Area
			Figure	2B	CCPV MY3, Middle Area
			Figure	2C	CCPV MY3, South Area
Appen	ndix	B	General	Proje	ect Tables
			Table	1	Project Components and Mitigation Credits
			Figure	3	Project Asset Map
			Table	2	Project Activity and Reporting History
			Table	3	Project Contacts
			Table	4	Project Attributes
Appen	ıdix	\mathbf{C}	Vegetati	ion As	sessment Data
			Table	5	Vegetation Plot Mitigation Success Summary
			Table	6	CVS Vegetation Metadata
			Table	7	Stem Count Arranged by Plot and Species
			Figure	4	Vegetation Monitoring Plot Photos
Appen	ıdix	D	Stream 1	Assess	sment Data
			Figure	5	Stream Photos by Channel and Station
			Table	8	Visual Morphological Stability Assessment
			Table	9	Verification of Bankfull Events
			Figure	6	Cross-Sections with Annual Overlays
			Figure	7	Longitudinal Profiles with Annual Overlays
			Figure	8	Pebble Count Plots with Annual Overlays
			Table	10	MY3 Stream Summary
			Table	11	Morphology and Hydraulic Monitoring Summary

1.0 EXECUTIVE SUMMARY

Michael Baker Engineering, Inc. (Baker) restored, enhanced or preserved 5,110 linear feet (LF) of perennial stream channel along Logan Creek and eight unnamed tributaries (UT1,UT2, UT3, UT4, UT5, UT6, UT7 and UT8) in Jackson County, NC (Appendix A). The nearest town, Cashiers, is approximately five miles west of the Logan Creek Project site. The site lies in the Savannah River Basin within the Targeted Local Watershed 03060101-010020 (Horsepasture River) and within the North Carolina Division of Water Resources (NCDWR) sub-basin formerly known as 03-06-01-01 (Keowee River Subbasin). The Horsepasture River is a National Wild and Scenic River and a state-designated Natural and Scenic River. The project involved the restoration, enhancement, and preservation of a stable channel and a Montane Alluvial/Montane Oak-Hickory Forest system (NCWAM 2010, Schafale and Weakley 1990) from impairments within the project area due to past agricultural conversion including orchard development, trout hatchery development, mink farming and more recently single-family home development.

The project goals directly address stressors identified in the Savannah River Basin Restoration Priority Plan (RBRP) (DMS 2001 and updated 2008) such as habitat degradation, inadequate riparian buffer cover, channel modification, and excess nutrient and sediment loading. The primary restoration goals, as outlined in the approved mitigation plan, are described below:

- Create geomorphically stable stream channels within the Logan Creek project site.
- Protect stable areas as well as mature trees and other desirable vegetation.
- Improve water quality within the Logan Creek project area through reduction of bank erosion, improved nutrient and sediment removal, and stabilization of streambanks.
- Improve aquatic and terrestrial habitat.

To accomplish these goals, the following actions were taken:

- Restore the existing eroding or over-wide stream reaches by creating a stable channel that has access to its floodplain.
- Improve in-stream habitat by providing a more diverse bedform with riffles and pools, creating deeper pools, providing woody debris for habitat, moving sand deposits through the reach and reducing bank erosion.
- Establish native stream bank and floodplain vegetation to increase storm water runoff filtering capacity, improve bank stability, provide shading to decrease water temperature, provide cover, improve wildlife habitat and protect this area with a permanent conservation easement.
- Improve terrestrial habitat by increasing the density of tree species that root deeply, by thinning the thick stands of rhododendron within the easement area and planting a more diverse native plant community.

During Monitoring Year 3 (MY3), our monitoring activities indicated that the planted acreage was functioning well with most banks, benches and floodplain areas developing a diverse herbaceous community and having good growth of planted trees. There were no Vegetative Problem Areas identified during 2017. The Encroachment Area (EA-1) that was noted in 2016 is still mowed as a part of the nature trail, although no new trees in Vegetation Plot 3 have been affected since MY2. Despite the impacts to the trees in the plot, Veg Plot 3 still meets minimum success criteria for MY3.

The six channel problem areas noted in the MY2 report did not show further erosion and degradation during 2017. The sites were stabilized by sloping the banks, seeding, mulching, installing matting, and planting live stakes. These areas are now stable and if they remain stable through 2018 they will be removed from the monitoring report in MY4. Updated photos of these areas, labeled 2-1 through 2-6 on the MY3 CCPV, can be found in Appendix D.

There were two additional areas of erosion and three instances of piping log structures noted in MY3 (labeled 3-1 through 3-5). The erosion areas will be monitored in the coming year to see if they stabilize naturally, and the piping structures will be repaired.

As noted in the Baseline report, eight (8) vegetation monitoring plots were installed at this site, with seven (7) being installed along the restoration reach (Logan Creek, Reach 1) and one (1) being installed along the enhancement reach (Logan Creek, Reach 2). The location of these vegetation monitoring plots can be seen on Figures 2A-C. The average density of total planted stems following the MY3 growing season is 683 stems per acre (SPA). The average density of volunteer trees across all 8 vegetation plots was 304 SPA.

Stream geomorphological stability and performance during MY3 was assessed by surveying thirteen (13) cross-sections (8 on Logan Creek, 2 on UT3, 2 on UT6 and 1 on UT8) and a profile of Logan Creek, UT3, UT6 and UT8, evaluating the bed particle size with 3 riffle pebble counts and by observation and replicating channel location photographs. An additional cross-section was added on UT8 during MY2 surveying so that we have cross-sections on all restored tributaries. Cross-sections of all the channels indicated that there was very little change in the cross-sections during MY3. The particle size observed in MY3 pebble counts increased slightly in two of the pebble counts and remained the same in the third. No observed changes indicate any instability. The Visual Morphological Stability Assessment indicates that the Site is stable and performing well. All but three structures (CPA 3-1, 3-3, and 3-5), are functioning as designed during MY3. These structures are all instances of fabric tearing and allowing water and sediment to wash under the log structure over time (Table 14 in e-file data). These will be repaired in 2018. Overall, channel morphology is responding as designed and meeting project goals.

Summary information/data related to the Site and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report Appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report and in the Mitigation Plan available on the NCDMS website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

The monitoring plan for the Site includes criteria to evaluate the success of the stream and vegetation components of the project. The methodology and report template used to evaluate these components adheres to the NCDMS monitoring guidance document dated December 1, 2009 and other mitigation guidance (NCDMS 2009 and USACE 2003), which will continue to serve as the template for subsequent monitoring years. The specific locations of monitoring features: vegetation plots, permanent cross-sections and profiles, and the crest gauge location, are shown on the Current Conditions Plan View (CCPV) sheets found in Appendix A.

Vegetation monitoring plots, pebble counts and site photo points were monitored in September 2017. Site surveys for channel cross-sections, photos and profiles were conducted in October 2017.

2.1 Vegetation Assessment

To determine if success criteria are achieved, vegetation monitoring quadrants (veg plots) were installed and are monitored in accordance with the CVS-NCDMS Protocol for Recording Vegetation, Version 4.1 (CVS

2007 and Lee, Peet, Roberts and Wentworth 2007). The vegetation monitoring plots are a minimum of two percent of the planted portion of the Site with eight plots established randomly within the planted riparian buffer, per CVS Monitoring Level 2. No veg plots were established within the undisturbed forested areas along the northern part of the project or within the undisturbed forested areas along Reach II of Logan Creek and UT5. A small area was disturbed within this enhancement reach so that structures and channel repairs could be made during construction. Veg Plot 1 is located in this area where bare root trees and herbaceous vegetation were planted. The sizes of individual quadrants are 100 square meters for woody species and 1 square meter for herbaceous vegetation. Herbaceous vegetation quadrants were established in one corner of the larger woody vegetation plots and monitored by comparative photographs taken each year.

Trees surviving within vegetation monitoring plots were visually accessed during year three monitoring. We found that all vegetation was in good condition. All plots indicated that most trees were growing and in good to excellent condition and herbaceous vegetation was well established and growing well. The average density of total planted stems following the MY3 growing season is 683 stems per acre (SPA) with a range from 405 SPA to 931 SPA. The average density of volunteer trees was 304 SPA and the density ranged from 0 to 1,012 SPA. The overall SPA including both planted and volunteer stems was 986. With an average planted density of 683 stems per acre, the Site has met the minimum interim success criteria of 320 stems per acre by the end of MY3, and is on track to meet the final success criteria of 260 stems per acre by the end of MY5.

The invasive multiflora rose that was noted in MY2 was treated throughout the site in July 2017. As of MY3 monitoring (October 2017), the multiflora rose is largely under control across the site. Any new growth that is noted in the future will be treated as needed. No other areas of concern regarding the existing vegetation were noted along Logan Creek or any of the tributaries. Year 3 vegetation assessment information is provided in Appendix C.

2.2 Stream Assessment

The approach for the Logan Creek Site includes the restoration of channels to a stable morphology that allows for the transport of water and sediment through the Site and allows stream flows larger than bankfull flows to spread onto the floodplain. Stream monitoring efforts focus on visual observations, a crest gauge to document bankfull flooding events, surveying established stream cross-sections and channel profiles to assess channel stability and pebble counts to assess if proper sediment transport is taking place.

Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal Accuracy using Leica TS06 Total Station and was georeferenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the As-built Survey.

2.2.1 Morphologic Parameters and Channel Stability

Cross-sections were classified using the Rosgen Stream Classification System (Rosgen 1994) and all cross-sections were evaluated to determine if they meet design expectations. Cross-sections were also compared to cross-section plots from previous monitoring years to evaluate changes in the cross sections. Morphological survey data is presented in Appendix D.

A longitudinal profile was surveyed for the entire length of Logan Creek, UT3 and UT6, and UT8 to document changes during year 3 of monitoring. The survey was tied to a permanent benchmark and measurements included thalweg, water surface (where flow was present), and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth.

Stream geomorphological stability and performance during MY3 was assessed by surveying thirteen (13) cross-sections (8 on Logan Creek, 2 on UT3, 2 on UT6 and 1 on UT8) and a profile of these channels as described above. The bed particle size was evaluated with three riffle pebble counts and by observation and replicating channel location photographs. Cross-sections and profiles of all the channels indicated that there was very little change in the channel during MY3. Many of the surveyed

pools deepened slightly since MY2 and pools throughout the site seem to have returned to their design depth after the drought conditions of 2016. The Visual Morphological Stability Assessment indicates that the Site is stable and performing at 98 to 100 percent for all parameters. Three structures (two on Logan Creek Reach 1, one on UT8) were piping during MY3 (CPA 3-1, CPA 3-3, CPA 3-5). The fabric that should have sealed the upstream side of these structures had torn allowing water under the structure instead of over it. This issue will be repaired prior to the next growing season (Table 14 in e-file data). Overall, channel morphology is responding as designed and meeting project goals.

Pebble count data for MY3 indicates a shift to larger particle sizes as compared to the MY0 data. The channel had a mean D50 of 16.5 mm during baseline sampling, 36.9 mm during MY1, 22.2 mm in MY2, and 26.8 mm in MY3. This represents a general coarsening of particle size since baseline sampling.

2.2.2 Hydrology

A crest gauge was installed on the floodplain at the bankfull elevation along the right top of bank on Logan Creek at approximate Station 30+00. There were two major bankfull events recorded on the crest gauge during MY3. The crest gauge indicated a water depth on the floodplain of 2.17 feet during the first event and 1.45 feet during the second event. Rainfall data from the nearest CRONOS weather station (SASS) in Pickens, SC indicates that the first storm may have occurred on October 8, 2017 and the second event occurred on October 23, 2017. There were also physical indications of this flooding, such as large debris and wrack lines that indicated a flooding level that extended well beyond the top of bank (see photos with Table 9). Crest gauge readings are presented in Appendix D.

2.2.3 Photographic Documentation

Reference transects were photographed at each permanent cross-section. A survey tape is normally centered in the photograph when the tape is used to identify the transect. The water line was located in the lower area of the frame, and as much of the bank as possible included in each photograph. Photographs were taken at specific photo points established along each channel during Year 3 monitoring. Photographs from these points are replicated each year and used to document changes along the channel. Points were selected to include grade control structures as well as other structural components installed during construction. Annual photographs from the established photo points are shown in Appendix D.

2.2.4 Project Problem Areas

Project problem areas fall into three types: Vegetation Problem Areas (VPA), Encroachment Areas (EA), and Channel Problem Areas (CPA). All observed problem areas are shown on the CCPV maps. There were no VPAs identified during MY3. Vegetation was well established across the entire project site.

During MY3, three structures (CPA 3-1, 3-3, and 3-5) were noted that were experiencing piping. These structures are all instances of fabric tearing and allowing water and sediment to wash under the log structure over time. These structures will be repaired in 2018.

There were also two additional areas of erosion noted in MY3 (labeled CPA 3-2 and CPA 3-4). These areas both have sufficient vegetative cover, and will be monitored in the coming year to see if they stabilize naturally.

The Encroachment Area (EA-1) that was noted in 2016 is still regularly being mowed through Vegetation Plot 3, although no new trees in the plot have been affected since MY2. The mowed path through the plot is still approximately 10-12 feet wide. This issue will be addressed again with Lonesome Valley maintenance staff. Despite the impacts to the trees in the plot, Veg Plot 3 still meets minimum success criteria for MY3.

All issues discussed above reference the CCPV mapping and the Stream Problem Area table included in Appendix D and the e-File data with associated photos.

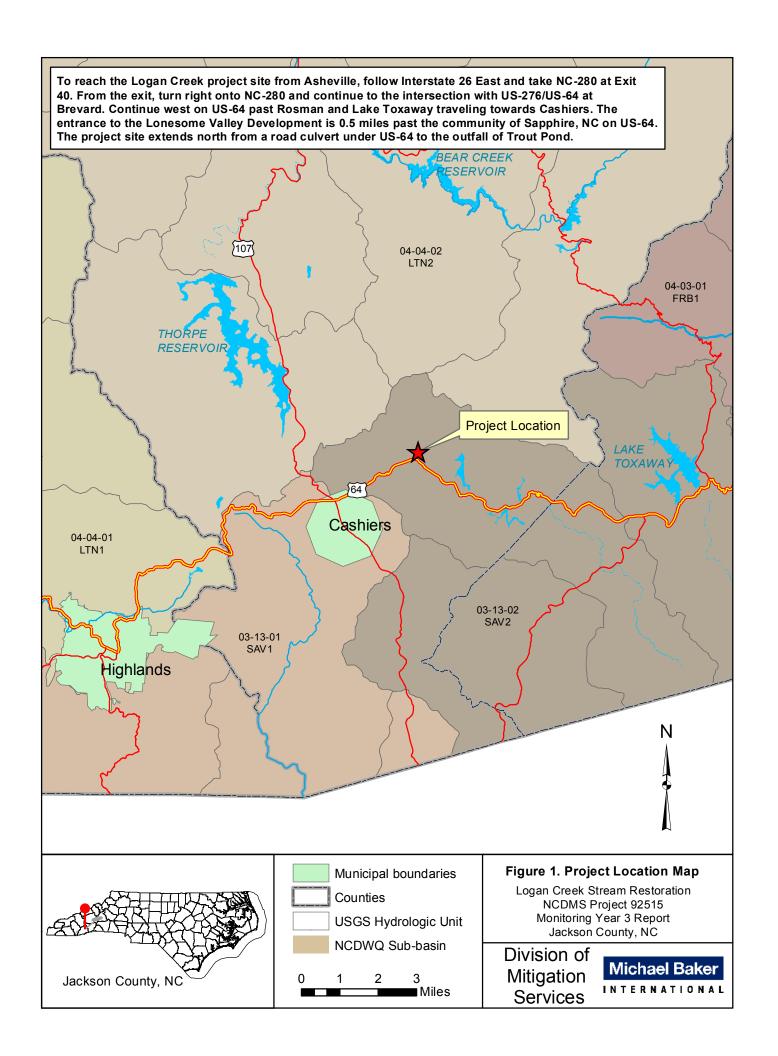
3.0 REFERENCES

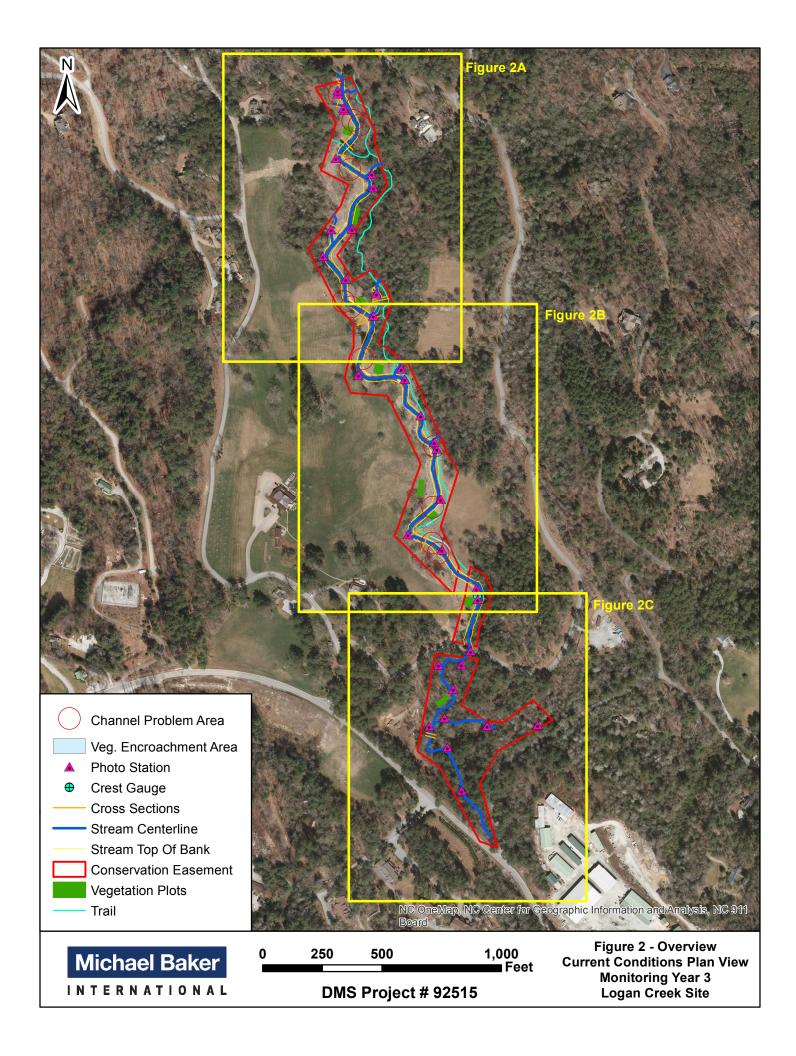
- Carolina Vegetation Survey (CVS) and NC Ecosystem Enhancement Program (NCEEP). 2007. CVS-NCEEP Data Entry Tool v. 2.3.1. University of North Carolina, Raleigh, NC.
- Lee, M., Peet R., Roberts, S., Wentworth, T. 2007. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Guidance and Content Requirements for EEP Monitoring Reports Version 1.2.1. December 1, 2009.
- Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199.
- Schafale, M. P., and A. S. Weakley. 1990. Classification of the natural communities of North Carolina, third approximation. North Carolina Natural Heritage Program. Division of Parks and Recreation, NCDENR. Raleigh, NC.
- United States Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. Environmental Laboratory. US Army Engineer Waterways Experiment Station. Vicksburg, MS.
- 1997. Corps of Engineers Wetlands Research Program. Technical Note VN-rs-4.1. Environmental Laboratory. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS. 2005. "Technical Standard for Water-Table Monitoring of Potential Wetland Sites," WRAP Technical Notes Collection (ERDC TN-WRAP-05-2), U.S. Army Engineer Research and Development Center. Vicksburg, MS.
- 2003. Stream Mitigation Guidelines, April 2003, U.S. Army Corps of Engineers. Wilmington District.

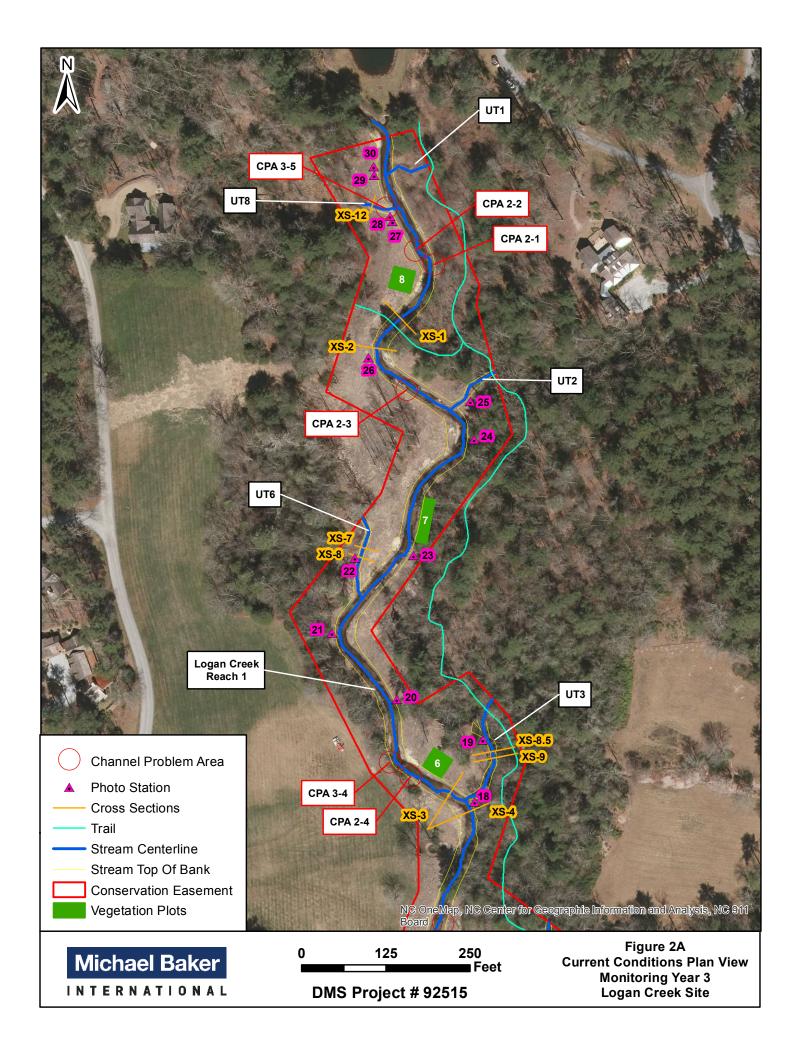
Appendix A

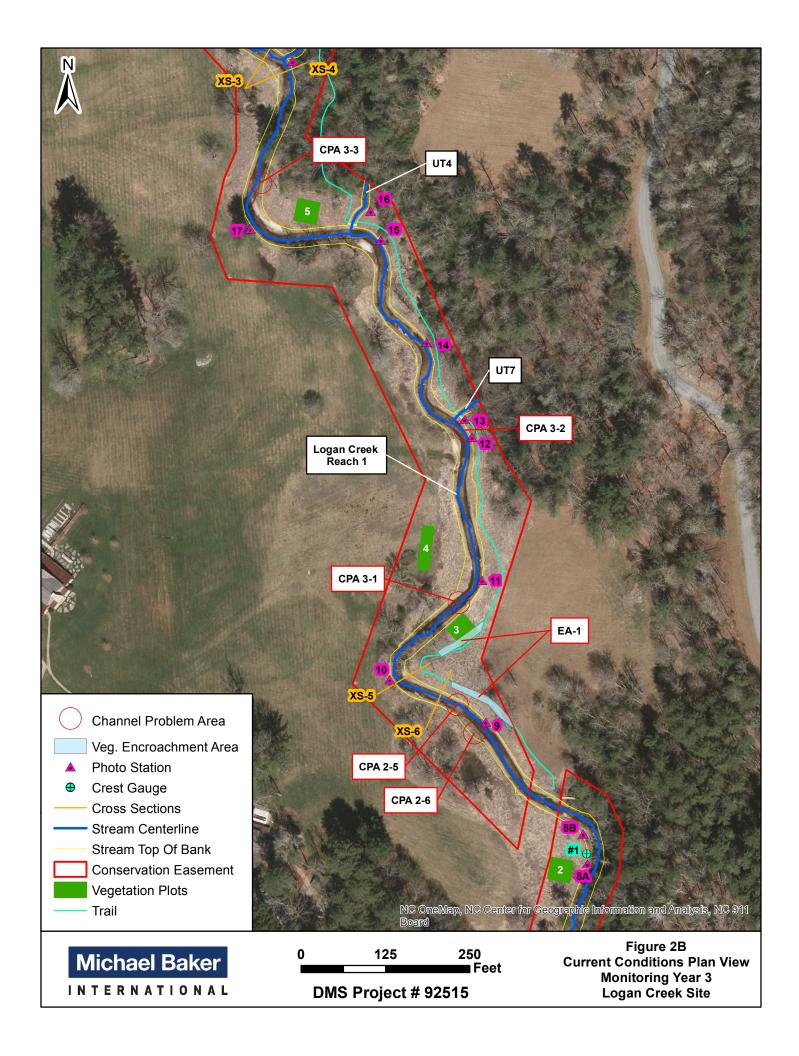
Project Vicinity Map and Background Tables

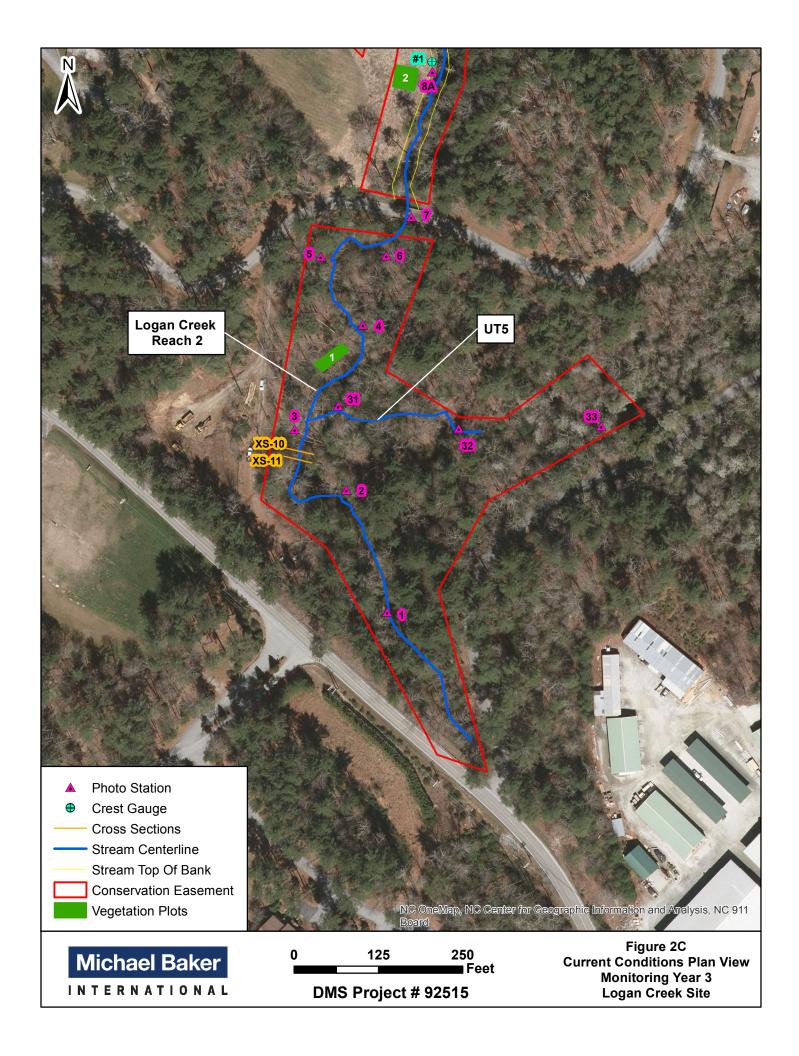
Includes:


Figure 1. Project Vicinity Map and Directions


Figure 2. Current Condition Plan View (CCPV) – Overview Map, MY3


Figure 2A. CCPV MY3, North Area


Figure 2B. CCPV MY3, Middle Area


Figure 2C. CCPV MY3, South Area

Appendix B

General Project Tables

Includes:

Table 1. Project Components and Mitigation Credits

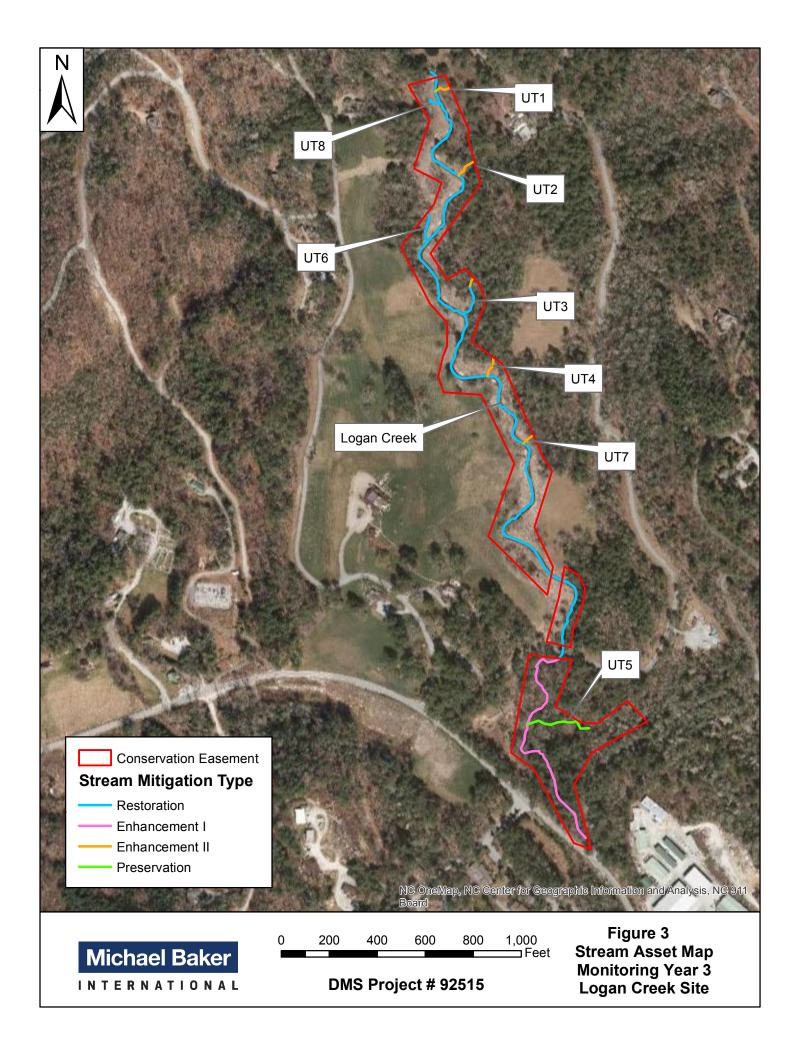

Figure 3. Project Asset Map

Table 2. Project Activity and Reporting History

Table 3. Project Contacts

Table 4. Project Attributes

Table 1.	Project Con	nponents an	d Mitigatio	n Credits							
	reek Restora				92515						
Ü		<u> </u>				ation Cred	lits				
		Stre	eam		Riparian Wetland	Non-riparian Wetland			Buffer	Nitrogen Nutrient Offset	Phosphorus Nutrient Offset
Type	R	EI	EII	P							
Totals	3,441 SMU	692 SMU	136 SMU	58 SMU							
					Projec	t Compon	ents				
Project Component or Reach ID Stati		ioning/ Loca	ation	Existing l	U	Anni		Restoration/ Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ratio	
STREAM					•				•	•	•
Logan C	reek										
	Reach 1		+00 to 31+8		3134	LF		ation - PI	3,131 SMU	3,131 LF	1:1
	Reach 2	32+43 to 42+81			1038			cement I	692 SMU	1,038 LF	1.5:1
UT1		C)+00 to 0+7	1	71 L		Enhancement II		28 SMU	71 LF	2.5:1
UT2		C)+00 to 0+9	2	92 l	_F	Enhancement II		37 SMU	92 LF	2.5:1
UT3											
	Reach 1	_)+00 to 0+4	-	40 L			cement II	16 SMU	40 LF	2.5:1
	Reach 2)+40 to 1+7		138			ation - PI	138 SMU	138 LF	1:1
UT4)+00 to 0+8		84 L			cement II	34 SMU	84 LF	2.5:1
UT5)+00 to 2+8		290			ervation	58 SMU	290 LF	5:1
UT6)+00 to 1+2		127			ation - PI	127 SMU	127 LF	1:1
UT7 UT8)+00 to 0+5)+00 to 0+4		54 l 45 l		Enhancement II Restoration - P1		21 SMU	54 LF	2.5:1
018		C)+00 to 0+4	5	45 [_F	Restora	ation - P1	45 SMU	45 LF	1:1
					Compo	nent Summ	ation				
I	Restoration L	evel	Strea	m (LF)	Ripari	an Wetlan	d (AC)		rian Wetland (AC)	Buffer (SF)	Upland (AC)
	Restoration	n	3,	441							
	Enhancemen	nt I	1,	038							
	Enhancemen	t II	3	41							
	Creation										
	Preservation 290			90							
High	n Quality Pres	ervation									
					BM	P Element	S				
Element		Location	Purpose/Fu	nction		Notes					
BMD Ela	ments: DD-1	Rioretentien	Call: SE- S	and Filter: S	W= Storman	tor Watland	I. WIDD- W	at Datantian	Pond; DDP= Dr	ry Detention	
	= Filter Strip;							Ct Detellition	Tolia, DDF – Di	ry Determon	
r onu, r o	inci suip,	o orasseu	5 waie, Lb-	Level Spice	auci, ivi ivall	nui mmalal	Ion Aica				

Table 2. Project Activity and Reporting History	
Logan Creek Restoration Project: DMS Project ID No. 9251	15

Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Jun-07	06-07	Apr-08
Apr-13	N/A	May-13
N/A	N/A	Jun-13
N/A	N/A	May-13
N/A	N/A	Jun-14
N/A	N/A	Jan-15*
N/A	N/A	Jan-15*
N/A	N/A	Jan-15*
N/A	N/A	May-15**
N/A	Mar-15	Aug-15
N/A	N/A	Nov-15
N/A	N/A	Apr-16
Dec-16	Nov-16	Dec-16
Dec-17	Oct-17	Dec-17
Dec-18	N/A	N/A
Dec-19	N/A	N/A
	Completion Jun-07 Apr-13 N/A N/A N/A N/A N/A N/A N/A N/A Dec-16 Dec-17 Dec-18	Completion Complete Jun-07 06-07 Apr-13 N/A N/A N/A Dec-16 Nov-16 Dec-17 Oct-17 Dec-18 N/A Dec-19 N/A

^{*} Began seeding with the start of construction June, 2014 and site was seeded multiple times with a final entire area overseeding at the time the bare root trees were planted.

^{**} Construction of the majority of the site was completed by November 1, 2014 after a 2 week extension of the trout moratorium. The Enhancement Reach was done after April 15, 2015 (when Trout Moratorium ends) and was completed by May 12, 2015.

Table 3. Project Contacts	
Logan Creek Restoration Project: DMS Project	ID No. 92515
Designer	
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201
Whenaci Baker Engineering, inc.	Asheville, NC 28806
	<u>Contact:</u>
	Micky Clemmons, Tel. 828-412-6100
Construction Contractor	
Divor Works Inc	6105 Chapel Hill Road
River Works, Inc.	Raleigh, NC 27607
	Contact:
	Bill Wright, Tel. 919-582-3575
Planting Contractor	
Dissay Wanka Lua	6105 Chapel Hill Road
River Works, Inc.	Raleigh, NC 27607
	Contact:
	Bill Wright Tel. 919-582-3575
Seeding Contractor	
Dissay Wanka Lua	6105 Chapel Hill Road
River Works, Inc.	Raleigh, NC 27607
	Contact:
	Bill Wright, Tel. 919-582-3575
Seed Mix Sources	Green Resources (seed), Tel. 336-855-6363
Nursery Stock Suppliers	ArborGen Inc. (trees), 843-528-3204
7 11	Dykes and Son (trees), 931-668-8833
Monitoring Performers	
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201
Whenaci Baker Engineering, inc.	Asheville, NC 28806
	<u>Contact:</u>
Stream and Vegetation Monitoring	Micky Clemmons, Tel. 828-412-6100
Monitoring Surveyor	Kee Mapping and Surveying
	P.O. Box 2566
	Asheville, NC 28802
	Contact: Brad Kee, License #C-3039; Phone: 828-575-9021

·	oject ID No. 92515 Project Inform	ation	
Project Name	Logan Creek Mitigation Project		
County	Jackson		
Project Area (acres)	12.71		
Project Coordinates (latitude and longitude)	Latitude 35.132803° Longitude	-83 061046°	
(Watershed Summary		
Physiographic Province	Blue Ridge		
River Basin	Savannah River Basin		
USGS Hydrologic Unit 8-digit and 14-digit	03060101 / 03060101010020		
DWR Sub-basin	Keowee River: 0306010101		
Project Drainage Area (AC)	0 0	o 1714 at end, UT1, UT4, UT6, UT	7 & UT8 <13, UT2 = 26; UT3 =
	UT5 = 128.		
Project Drainage Area Percentage of	<2%		
Impervious Area		Deciduous Forest (76%)	
		Evergreen Forest (8%)	
USGA Land Use Classification		Pasture Land (4.6%)	
		1 asture Land (4.070)	
	Forest (91%)	Shrub (1%)	
NCDMS Land Use Classification for this	Developed (6%)	Other (.5%)	
Hydrologic Unit	Agriculture (1.5%)	(.570)	
	Stream Reach Summar	v Information	
Parameters	Mainstem - Reach 1	Mainstem - Reach 2	UT3
			R1 R2
Length of Reach (LF)	3,134	1,038	40 138
Valley Classification (Rosgen)	VIII	VIII	II
Drainage Area (AC)	1,557	1,714	32
NCDWR Stream Identification Score	52.5	52.5	41.5
NCDWR Water Quality Classification	C; TR: +HQW	C; TR: +HQW	C; TR: +HQW
Morphological Description (Rosgen stream	C-E	С-Е	В
Evolutionary Trend	C→E	C→E	В
Underlying Mapped Soils	NkA	SaC	NkA, SaC
Drainage Class	Poorly drained to very poorly drained soils	Very deep, well drained, mod permeable soils	Somewhat poorly to well drain
Soil Hydric Status	Non-Hydric	Non-Hydric	Site-specific
Average Channel Slope (ft/ft)	0.004	0.007	0.012
FEMA Classification	Zone AE	Zone AE	None
	Mixed Forested/Rhododendron	Mixed Forested/Rhododendron	Mixed Forested/Rhododendro
Native Vegetation Community	and grassland	and grassland	and grassland
Percent Composition of Exotic/Invasive	<1%	<1%	<1%
Vegetation ²	~1 /0	~1 /6	~1 /6
Parameters	UT3	UT6	6 other small UTs in R1
	R1 R2		
Length of Reach (LF)	40 138	127	45 - 127
Valley Classification (Rosgen)	II	II	II
Drainage Area (AC)	32	32	.02 to .04
NCDWR Stream Identification Score	41.5	41.5	40.5 - 32.5
NCDWR Water Quality Classification	C; TR: +HQW	C; TR: +HQW	C; TR: +HQW
Morphological Description (Rosgen stream	B B	B B	E - B B→C→E
Evolutionary Trend	NkA, SaC	NkA, SaC	NkA, SaC
Underlying Mapped Soils			
Drainage Class	Somewhat poorly to well drained	Somewhat poorly to well drained	Somewhat poorly to well drain
Soil Hydric Status	Site-specific	Site-specific	Site-specific
Average Channel Slope (ft/ft)	0.012	0.012	0.0134 (UT6)
FEMA Classification	None	None	None
Native Vegetation Community	Mixed Forested/Rhododendron	Mixed Forested/Rhododendron	Mixed Forested/Rhododendro
	and grassland	and grassland	and grassland
Percent Composition of Exotic/Invasive	<1%	<1%	<1%
Vegetation ²	-170	.170	-1/0
	Regulatory Consider		
Regulation	Applicable	Resolved	Supporting Documentation
Waters of the United States – Section 404	Yes	Yes	Permit: Action ID #2008-017
Waters of the United States – Section 401	Yes	Yes	Permit: WQC #3885
Endangered Species Act	No	Yes	Categorical Exclusion
Historic Preservation Act	No	Yes	Categorical Exclusion
Coastal Zone Management Act (CZMA)/	No	N/A	N/A
Coastal Area Management Act (CAMA)			
FEMA Floodplain Compliance	Yes	No-Rise	Certification, June 27, 2016
Essential Fisheries Habitat	No	N/A	N/A
Notes: 1. See Figure 2.5 of Mitigation Plan for key to		ata which is more dated (1996)	

MICHAEL BAKER ENGINEERING, INC. MONITORING YEAR 3 LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Appendix C

Vegetation Assessment Data

Includes:

Table 5.	Vegetation	Plot Mitigation	Success	Summary
----------	------------	-----------------	---------	---------

- Table 6. CVS Vegetation Metadata Table
- Table 7. Stem Count Arranged by Plot and Species
- Figure 4. Vegetation Monitoring Plot Photos
- Table 8. Vegetative Problem Areas
- Table 9. Vegetation Condition Assessment at Logan Creek

Table 5. Vegetation Plot Mitigation											
	Success Si	ummary (2017,	MY3)								
21.4	Stream/ Wetland	2	_ . , 3	Success							
Plot #	Stems ¹	Volunteers ²	Total ³	Criteria Met?							
1	809	0	809	Yes							
2	405 607 1012 Yes										
3	607 607 1214 Yes										
4	647 202 850 Yes										
5	850 0 850 Yes										
6	688 1012 1700 Yes										
7	931	0	931	Yes							
8	526	0	526	Yes							
Project Avg	683	304	986	Yes							
Stem Class	Characteristics										
¹ Stream/ Wetland	Native planted v	woody stems. In	cludes shrubs,	does NOT							
Stems	include live stak	es. No vines									
² Volunteers	Native woody st	ems. Not plante	d. No vines.								
3	Planted + volun	teer native wood	y stems. Includ	des live stakes.							
³ Total	Excl. exotics. Ex	cl. vines.									
This color indicates	that the number	includes volunte	er stems								
Indicates that the st	ems per acre exc	ceeds requiremen	nts by 10%								
Indicates that the st	ems per acre ex	ceeds requiremer	nts, but by less	than 10%							

Table 6. Vegetation Metadata

Logan Creek Stream and Restoration Project - Project #92515

Report Prepared By Date PreparedRussell Myers

10/31/2017 9:24

database name 92515 MY3 Logan cvs-eep-entrytool-v2.3.1.mdb

L:\projects\109243 - Logan Creek\Monitoring\YR3 Monitoring\2.0 -

database location Monitoring Data\App C - Vegetation\Veg Data

computer name ASHELRMYERS file size 46358528

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Description of database file, the report worksheets, and a summary of

Metadata project(s) and project data.

Each project is listed with its PLANTED stems per acre, for each year.

Proj, planted This excludes live stakes.

Each project is listed with its TOTAL stems per acre, for each year. This

Proj, total stems includes live stakes, all planted stems, and all natural/volunteer stems.

List of plots surveyed with location and summary data (live stems, dead

Plots stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all plots.

Vigor by Spp Frequency distribution of vigor classes listed by species.

List of most frequent damage classes with number of occurrences and

Damagepercent of total stems impacted by each.Damage by SppDamage values tallied by type for each species.

Damage by Plot Damage values tallied by type for each plot.

A matrix of the count of PLANTED living stems of each species for each

Planted Stems by Plot and Spp plot; dead and missing stems are excluded.

A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are

ALL Stems by Plot and spp excluded.

PROJECT SUMMARY-----

Project Code 92515
project Name Logan Creek

This Project will restore or enhance 4823 linear feet (LF) of stream

Description along Logan Creek.

River Basin Savannah length(ft) 5110 stream-to-edge width (ft) 30 area (sq m) 28481.19

Required Plots (calculated) 8
Sampled Plots 8

Table 7. Stem Count Arranged by Plot
Project: Logan Creek, DMS Project 392515

										Cui	rrent Plot D	ata (MY3 2	2017)							
			9	2515-01-00	01	9	2515-01-00	02	9	2515-01-00	03	9	2515-01-00	04	9	2515-01-00	005	9	2515-01-00	06
Scientific Name	Common Name	Species Type	Р	V	Т	Р	٧	T	Р	V	T	Р	V	Т	Р	V	Т	Р	٧	Т
Alnus serrulata	hazel alder	Shrub				3	10	13	6	15	21	2		2	7		7	3		3
Betula nigra	river birch	Tree							1		1	3		3	3		3	1		1
Diospyros virginiana	common persimmon	Tree				1		1	1		1	2		2	4		4	2		2
Fraxinus pennsylvanica	green ash	Tree				1		1	2		2	4		4	2		2	8		8
Hamamelis virginiana	American witchhazel	Tree	7		7															
Leucothoe fontanesiana	highland doghobble	Shrub																		
Lindera benzoin	northern spicebush	Shrub	2		2															
Liriodendron tulipifera	tuliptree	Tree				1	5	6				2	5	7				1	25	26
Nyssa sylvatica	blackgum	Tree				1		1	2		2				2		2			
Oxydendrum arboreum	sourwood	Tree																		
Pinus strobus	eastern white pine	Tree																		
Quercus alba	white oak	Tree				3		3				2		2	2		2			
Quercus rubra	northern red oak	Tree							3		3	1		1	1		1	2		2
Robinia pseudoacacia	black locust	Tree																		
Sambucus canadensis	Common Elderberry	Shrub																		
Unknown		Shrub or Tree																		
Viburnum dentatum	southern arrowwood	Shrub	11		11															
		Stem count	20	0	20	10	15	25	15	15	30	16	5	21	21	0	21	17	25	42
		size (ares)		1			1			1			1			1	•		1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	3	0	3	6	2	6	6	1	6	7	1	7	7	0	7	6	1	6
		Stems per ACRE	809	0	809	405	607	1012	607	607	1214	647	202	850	850	0	850	688	1012	1700
P = Planted		This color indicates th	at the num	ber includ	es voluntee	r stems		•												

Table 7. Stem Count Arranged by Plot, continued

V = Volunteer

T = Total

				Cur	rent Plot D	ata (MY3 2	(017)							Annual	Means					
			9	2515-01-00	07	9	2515-01-00	08	MY3 (2017)			MY2 (2016)			MY1 (2016)				MY0 (2015)	,
Scientific Name	Common Name	Species Type	Р	V	Т	Р	V	Т	Р	V	Т	Р	V	T	Р	V	T	Р	V	Т
Alnus serrulata	hazel alder	Shrub	6		6	5		5	32	25	57	32	30	62	32		32	33		33
Betula nigra	river birch	Tree	1		1	2		2	11		11	12		12	11		11	13		13
Diospyros virginiana	common persimmon	Tree	5		5	1		1	16		16	18		18	20		20	24		24
Fraxinus pennsylvanica	green ash	Tree	3		3	2		2	22		22	23		23	24		24	24		24
Hamamelis virginiana	American witchhazel	Tree							7		7	9		9	11		11			
Leucothoe fontanesiana	highland doghobble	Shrub	1		1				1		1	3		3	3		3	4		4
Lindera benzoin	northern spicebush	Shrub							2		2	2		2	2		2			
Liriodendron tulipifera	tuliptree	Tree	4		4	2		2	10	35	45	9	55	64	11		11	17		17
Nyssa sylvatica	blackgum	Tree	1		1	1		1	7		7	8		8	9		9	20		20
Oxydendrum arboreum	sourwood	Tree											2	2						
Pinus strobus	eastern white pine	Tree											14	14						
Quercus alba	white oak	Tree							7		7	7		7	6		6	6		6
Quercus rubra	northern red oak	Tree	2		2				9		9	10		10	12		12	13		13
Robinia pseudoacacia	black locust	Tree											1	1						
Sambucus canadensis	Common Elderberry	Shrub														1	1			
Unknown		Shrub or Tree																7		7
Viburnum dentatum	southern arrowwood	Shrub							11		11	11		11	11		11	9		9
		Stem count	23	0	23	13	0	13	135	60	195	144	102	246	152	1	153	170	0	170
		size (ares)		1			1			8			8			8			8	
		size (ACRES)		0.02			0.02			0.20			0.20			0.20			0.20	
		Species count	8	0	8	6	0	6	12	2	12	12	5	15	12	1	13	11	0	11
		Stems per ACRE	931	0	931	526	0	526	683	304	986	728	516	1244	769	5	774	860	0	860

P = PlantedThis color indicates that the number includes volunteer stemsV = VolunteerIndicates that the stems per acre exceeds requirements by 10%T = TotalIndicates that the stems per acre exceeds requirements, but by less than 10%

Indicates that the stems per acre exceeds requirements by 10%

Indicates that the stems per acre exceeds requirements, but by less than 10%

Hi wtg'60Logan Creek Site – Monitoring Year 3 Vegetation Plot Photos, DMS Project #92515

Photo 1. Vegetation Plot 1 – Tree photo (October 2017).

Photo 2. Vegetation Plot 1 – Herbaceous photo (October 2017).

Photo 3. Vegetation Plot 2 – Tree photo (October 2017).

Photo 4. Vegetation Plot 2 – Herbaceous photo (October 2017).

Photo 5. Vegetation Plot 3 – Tree photo (October 2017).

Photo 6. Vegetation Plot 3 – Herbaceous photo (October 2017).

Logan Creek Site - Vegetation Plot Photos, DMS Project #92515 - continued

Photo 7. Vegetation Plot 4 – Tree photo (October 2017).

Photo 8. Vegetation Plot 4 – Herbaceous photo (October 2017).

Photo 9. Vegetation Plot 5 – Tree photo (October 2017).

Photo 10, Vegetation Plot 5 – Herbaceous photo (October 2017).

Photo 11. Vegetation Plot 6 – Tree photo (October 2017).

Photo 12. Vegetation Plot 6 – Herbaceous photo (October 2017).

Logan Creek Site - Vegetation Plot Photos, DMS Project #92515 - continued

Photo 13. Vegetation Plot 7 – Tree photo (October 2017).

Photo 14. Vegetation Plot 7 – Herbaceous photo (October 2017).

Photo 15. Vegetation Plot 8 – Tree photo (October 2017).

Photo 16. Vegetation Plot 8 – Herbaceous photo (October 2017).

Table 8. Vegetative Problem Areas MY3												
Feature Category Station #/Range Probable Cause Photo #												
Bare Bank	None											
Bare Bench	None											
Bare Flood Plain	None											
Invasive /Exotic Populations	None											

Table 9 Vegetation Condition Assessment at Logan Creek

Planted Acreage ¹	7.49					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	Pattern and Color	0	0.00	0.0%
Total				0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	Pattern and Color	0	0.00	0.0%
Cumulative Total				0	0.00	0.0%
Easement Acreage ²	12.71					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	Pattern and Color	0	0.00	0.0%
5. Easement Encroachment Areas ³	There was one Encroachment Area (EA-1) noted in 2016 along the nature trail, in the area of stations 23+00 to 28+00. A new maintenance staff person had the nature trail mowed; however, a wider area was mowed than we verbally agreed should be maintained. The width was 10-12 feet wide, while we had agreed to a width of 4-6 feet wide, which approximates the width of the previously existing nature trail. We discussed this with staff at Lonesome Valley and they agreed to address this issue with the trail maintenance staff, and to be sure they know the proper width for future maintenance.	none	Light Blue	2	0.01	0.19%

^{1 =} Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

^{2 =} The acreage within the easement boundaries.

^{3 =} Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

^{4 =} Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spaces are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period of shortly, thereafter) or affect the community structure for existing more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The blummoderate concern group are those species strat generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, density or distribution relative to native biomass, and the practicality of treatment. For example, even modest mounts of Mucrosularity of the projects history will warrant control, but potentially large coverages of Microsularity early in the projects history will warrant control, but potentially large coverages of Microsularity early will not likely trigger control because of the limited capacities to impact prevention of programming the projects monitoring by the projects monitoring the projects

Appendix D

Stream Assessment Data

Includes:

- Table 8. Visual Morphological Stability Assessment
- Table 9. Verification of Bankfull or Greater than Bankfull Events
- Figure 6. Cross-Sections with Annual Overlays
- Figure 7. Longitudinal Profiles with Annual Overlays
- Figure 8. Pebble Count Plots with Annual Overlays
- Table 10. Monitoring Year 3 Stream Summary
- Table 11. Morphology and Hydraulic Monitoring Summary

Figure 5. Logan Creek Stream Restoration project Photo Points - Monitoring Year 3, (Stationing is approximate)

Photo 1. Logan Creek Photo Point 1 – Station 40+45 (October 2017) upstream view from right bank.

Photo 2. Logan Creek Photo Point 1 – Station 40+45 (October 2017) downstream view from right bank.

Photo 3. Logan Creek Photo Point 2 – Station 38+60 (October 2017) downstream view from left bank.

Photo 4. Logan Creek Photo Point 2 – Station 38+60 (October 2017) upstream view from left bank.

Photo 5. Logan Creek Photo Point 3 – Station 36+75 (October 2017) upstream view from right bank.

Photo 6. Logan Creek Photo Point 3 – Station 36+75 (October 2017) downstream view from right bank.

Photo 7. Logan Creek Photo Point 4 – Station 34+80 (October 2017) downstream from left bank.

Photo 8. Logan Creek Photo Point 4 – Station 34+80 (October 2017) upstream from left bank.

Photo 9. Logan Creek Photo Point 5 – Station 33+60 (October 2017) upstream from right bank.

Photo 10. Logan Creek Photo Point 5 – Station 33+60 (October 2017) downstream from right bank.

Photo 11. Logan Creek Photo Point 6 – Station 32+70 (October 2017) downstream view from left bank.

Photo 12. Logan Creek Photo Point 6 – Station 32+70 (October 2017) upstream view from left bank.

Photo 13. Logan Creek Photo Point 7 – Station 32+15 (October 2017) downstream view from bridge.

Photo 14. Logan Creek Photo Point 7 – Station 32+00 (October 2017) upstream view from bridge.

Photo 15. Logan Creek Photo Point 8a – Station 29+75 (October 2017) downstream view from right bank.

Photo 16. Logan Creek Photo Point 8b – Station 29+25 (October 2017) upstream view from right bank.

Photo 17. Logan Creek Photo Point 9 – Station 26+75 (October 2017) downstream view from left bank.

Photo 18. Logan Creek Photo Point 9 – Station 26+75 (October 2017) upstream view from left bank.

Photo 19. Logan Creek Photo Point 10 – Station 25+25 (October 2017) upstream view from right bank.

Photo 20. Logan Creek Photo Point 10 – Station 25+25 (October 2017) downstream view from right bank.

Photo 21. Logan Creek Photo Point 11 – Station 23+20 (October 2017) downstream view from left bank.

Photo 22. Logan Creek Photo Point 11 – Station 23+20 (October 2017) upstream view from left bank.

Photo 23. Logan Creek Photo Point 12 – Station 21+20 (October 2017) downstream view from left bank.

Photo 24. Logan Creek Photo Point 12 – Station 21+20 (October 2017) upstream view from left bank.

Photo 25. UT7 Photo Point 13 – (October 2017) upstream view from left bank.

Photo 26. UT7 Photo Point 13 – (October 2017) downstream view from left bank.

Photo 27. Logan Creek Photo Point 14 – Station 19+45 (October 2017) downstream view from left bank.

Photo 28. Logan Creek Photo Point 14 – Station 19+45 (October 2017) upstream view from left bank.

Photo 29. Logan Creek Photo Point 15 – Station 17+45 (October 2017) downstream view from left bank.

Photo 30. Logan Creek Photo Point 15 – Station 17+45 (October 2017) upstream view from left bank.

Photo 31. UT4 Photo Point 16 – Station 0+40 (October 2017) downstream view from left bank.

Photo 32. UT4 Photo Point 16 – Station 0+40 (October 2017) upstream view from left bank.

Photo 33. Logan Creek Photo Point 17 – Station 15+50 (October 2017) upstream view from right bank.

Photo 34. Logan Creek Photo Point 17 – Station 15+50 (October 2017) downstream view from right bank.

Photo 35. Logan Creek Photo Point 18 – Station 12+90 (October 2017) downstream view from left bank.

Photo 36. Logan Creek Photo Point 18 – Station 12+90 (October 2017) upstream view from left bank.


Photo 37. UT3 Photo Point 19 – Station 00+60 (October 2017) upstream from left bank.

Photo 38. UT3 Photo Point 19 – Station 00+60 (October 2017) downstream from left bank.

Photo 39. UT3 Photo Point 19 – Station 00+60 (October 2017) upstream from left bank to vernal pool.

Intentionally left blank.

Photo 40. Logan Creek Photo Point 20 – Station 10+60 (October 2017) downstream view from left bank.

Photo 41. Logan Creek Photo Point 20 – Station 10+60 (October 2017) upstream view from left bank.

Photo 42. Logan Creek Photo Point 21 – Station 9+40 (October 2017) upstream view from right bank.

Photo 43. Logan Creek Photo Point 21 – Station 9+40 (October 2017) downstream view from right bank.

Photo 44. UT6 Photo Point 22 – Station 0+75 (October 2017) upstream view from right bank.

Photo 45. UT6 Photo Point 22 – Station 0+75 (October 2017) downstream view from right bank.

Photo 46. Logan Creek Photo Point 23 – Station 7+70 (October 2017) downstream view from left bank.

Photo 47. Logan Creek Photo Point 23 – Station 7+70 (October 2017) upstream view from left bank.

Photo 48. Logan Creek, Photo Point 24 – Station 5+70 (October 2017) downstream view from left bank.

Photo 49. Logan Creek, Photo Point 24 – Station 5+70 (October 2017) upstream view from left bank.

Photo 50. UT2, Photo Point 25 – Station 0+65 (October 2017) upstream view from left bank.

Photo 51. UT2, Photo Point 25 – Station 0+65 (October 2017) downstream view from left bank.

Photo 52. Logan Creek, Photo Point 26 – Station 3+80 (October 2017) upstream view from right bank.

Photo 53. Logan Creek, Photo Point 26 – Station 3+80 (October 2017) downstream view from right bank.

Photo 54. Logan Creek, Photo Point 27 – Station 1+12 (October 2017) upstream view from right bank.

Photo 55. Logan Creek, Photo Point 27 – Station 1+12 (October 2017) downstream view from right bank.

Photo 56. UT8, Photo Point 28 – Station 1+10 (October 2017) upstream view from right bank and confluence.

Photo 57. UT1, Photo Point 29 – Station 0+50 (October 2017) view upstream and confluence.

Photo 58. Logan Creek, Photo Point 30 – Station 0+50 (October 2017) upstream view from right bank.

Photo 59. Logan Creek, Photo Point 30 – Station 0+50 (October 2017) downstream view from right bank.

Photo 60. UT5 - Preservation, Photo Point 31 – Station 1+80 (October 2017) downstream view from midchannel to confluence.

Photo 61. UT5 - Preservation, Photo Point 31 – Station 1+80 (October 2017) upstream view from mid-channel to confluence.

Photo 62. UT5 - Preservation, Photo Point 32 – (October 2017) downstream view from right bank.

Photo 63. UT5 - Preservation, Photo Point 32 – (October 2017) upstream view from right bank.

Table 8. Visua	al Morphological Stability Assessment					
Logan Creek	Stream Restoration Project: DMS Project ID No. 92515	49415) Destauation	Danah			
	Logan Creek, Reach 1 (3	184 LF), Restoration	Reacn		1	
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-Built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Perfomance Mean or Total
A. Riffles	1. Present?	18	18	0	100	Widair or Total
7.1.111100	Armor stable (e.g. no displacement)?	18	18	0	100	
	3. Facet grades appears stable?	18	18	0	100	
	Minimal evidence of embedding/fining?	18	18	0	100	
	5. Length appropriate?	18	18	0	100	100%
D. DI-		0.5	0.5		400	
B. Pools	Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	35 35	35 35	0	100 100	
	Suniciently deep (Max Pool D.Mean Bit > 1.6?) Length appropriate?	35	35	0	100	100%
	3. Length appropriate?	33	33	0	100	100 /6
C. Thalweg	1. Upstream of pool (structure) centering? (%)	100	100	0	100	
· ·	2. Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	17	19	0	89	
	Of those eroding, # w/concomitant point bar formation?	19	19	0	100	
	3. Apparent Rc within spec?	19	19	0	100	
	Sufficient floodplain access and relief?	19	19	0	100	97%
E. Bed	General channel bed aggradation areas (bar formation)	3,184	3,184	0	100	
General	Channel bed degradation - areas of increasing down-	0,104	0,104	Ů	100	
	cutting or head cutting?	3,184	3,184	0	100	100%
F. Vanes,	Free of back or arm scour?	24	24	0	100	
Rock/Log	2. Height appropriate?	24	24	0	100	
Drop Structures*	3. Angle and geometry appear appropriate?	24	24	0	100	
Structures	Free of piping or other structural failures?	22	24	0	92	98%
G. Wads/	1. Free of scour?	24	24	0	100	
Boulders	2. Footing stable?	24	24	0	100	100%
	Logan Creek, Reach 2 (1,	38 I F) Enhancemen	t Reach			
		,, <u></u>				
Feature		(# Stable) Number Performing	Total number	Total Number / feet in unstable	% Performing in Stable	Feature Perfomance
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number				
	Metric (per As-Built and reference baselines) 1. Present?	(# Stable) Number Performing as Intended	Total number per As-Built	/ feet in unstable state	in Stable Condition 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)?	(# Stable) Number Performing as Intended 10 10	Total number per As-Built 10 10	/ feet in unstable state 0 0	in Stable Condition 100 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	(# Stable) Number Performing as Intended 10 10	Total number per As-Built 10 10	/ feet in unstable state 0 0 0	in Stable Condition 100 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining?	(# Stable) Number Performing as Intended 10 10 10	Total number per As-Built 10 10 10 10	/ feet in unstable state 0 0 0 0	in Stable Condition 100 100 100	Perfomance Mean or Total
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable?	(# Stable) Number Performing as Intended 10 10	Total number per As-Built 10 10	/ feet in unstable state 0 0 0	in Stable Condition 100 100	Perfomance
Category	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate?	(# Stable) Number Performing as Intended 10 10 10 10	Total number per As-Built 10 10 10 10 10 10	/ feet in unstable state 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100	Perfomance Mean or Total
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining?	(# Stable) Number Performing as Intended 10 10 10	Total number per As-Built 10 10 10 10	/ feet in unstable state 0 0 0 0	in Stable Condition 100 100 100	Perfomance Mean or Total
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?)	(# Stable) Number Performing as Intended 10 10 10 10 10	Total number per As-Built 10 10 10 10 10 10 10 10 13	/ feet in unstable state 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100	Perfomance Mean or Total
A. Riffles B. Pools	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	(# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13	Total number per As-Built 10 10 10 10 10 10 11 13 13 13	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
Category A. Riffles	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%)	(# Stable) Number Performing as Intended 10 10 10 10 10 11 11 11 11 13 13 13	Total number per As-Built 10 10 10 10 10 10 10 10 13 13 13 13 100	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
A. Riffles B. Pools	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	(# Stable) Number Performing as Intended 10 10 10 10 10 11 13 13	Total number per As-Built 10 10 10 10 10 10 11 13 13 13	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%)	(# Stable) Number Performing as Intended 10 10 10 10 10 10 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 10 10 11 13 13 13 10 100	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
A. Riffles B. Pools	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Total number per As-Built 10 10 10 10 10 10 10 10 10 1	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
Category A. Riffles B. Pools C. Thalweg	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 10 10 5	/ feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total
A. Riffles B. Pools C. Thalweg D. Meanders	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 5 5 5	Total number per As-Built 10 10 10 10 10 10 13 13 13 5 5 5	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 5 5 5	Total number per As-Built 10 10 10 10 10 10 10 13 13 13 13 100 100	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-	(# Stable) Number Performing as Intended 10 10 10 10 10 11 11 13 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 10 10 10 13 13 13 13 15 100 100 100 100 100	/ feet in unstable state	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 5 5 5 5	Total number per As-Built 10 10 10 10 10 10 13 13 13 5 5 5	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 11 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 10 10 11 13 13 13 13 100 100	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes,	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour?	(# Stable) Number Performing as Intended 10 10 10 10 10 11 11 13 13 13 13 100 100	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 5 5 5 1,038 1,038	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 10 10 10 10 10 5 5 5 1,038 1,038	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes,	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 10 13 13 13 100 100 5 5 1,038 11 11	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 10 10 10 13 13 13 13 100 100	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100%
Category A. Riffles B. Pools C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	Metric (per As-Built and reference baselines) 1. Present? 2. Armor stable (e.g. no displacement)? 3. Facet grades appears stable? 4. Minimal evidence of embedding/fining? 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? (%) 2. Downstream of pool (structure) centering? (%) 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing downcutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	(# Stable) Number Performing as Intended 10 10 10 10 10 10 10 10 10 5 5 5 1,038 1,038	Total number per As-Built 10 10 10 10 10 10 13 13 13 100 100 5 5 1,038 11 11	/feet in unstable state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in Stable Condition 100 100 100 100 100 100 100 100 100 10	Perfomance Mean or Total 100% 100% 100% 100% 100%

Boulders 2. Footing stable? 0 0 0 0 0 0 0 *Note: Due to very low water levels some piping is occurring, only one structure may need to be repaired to fix the issue. Most structures in Reach 2 were designed to have water go under them during low water, in order to move sand through the reach.

Table 8. Visu	al Morphological Stability Assessment - Continued					
Logan Creek	Stream Restoration Project: DMS Project ID No. 92515					
	UT	3 (178 LF)				
		(# Stable) Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	3	3	0	100	
	2. Armor stable (e.g. no displacement)?	3	3	0	100	
	3. Facet grades appears stable?	3	3	0	100	
	Minimal evidence of embedding/fining?	3	3	0	100	
	5. Length appropriate?	3	3	0	100	100%
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	3	3	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	3	3	0	100	
	3. Length appropriate?	3	3	0	100	100%
C. Thalweg ¹	Upstream of pool (structure) centering? (%)	100	100	0	100	
	Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	0	0			
	2. Of those eroding, # w/concomitant point bar formation?	0	0			
	3. Apparent Rc within spec?	0	0			
	Sufficient floodplain access and relief?	0	0			
E. Bed	General channel bed aggradation areas (bar formation)	178	178	0	100	
General	Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	178	178	0	100	100%
F. Vanes.	Free of back or arm scour?	4	4	0	100	
Rock/Log	Height appropriate?	4	4	0	100	
Drop	Angle and geometry appear appropriate?	4	4	0	100	
Structures	Arigie and geometry appear appropriate? Free of piping or other structural failures?	4	4	0	100	100%
	4. Free or piping or other structural failules?	4	4	0	100	100%
G. Wads/	1. Free of scour?	0	0			
Boulders	2. Footing stable?	0	0			

	UT6,	(127 LF)				
Feature		(# Stable) Number Performing	Total number	Total Number / feet in unstable	% Performing in Stable	Feature Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	3	3	0	100	
	2. Armor stable (e.g. no displacement)?	3	3	0	100	
	3. Facet grades appears stable?	3	3	0	100	
	Minimal evidence of embedding/fining?	3	3	0	100	
	5. Length appropriate?	3	3	0	100	100%
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	2	2	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	2	2	0	100	
	3. Length appropriate?	2	2	0	100	100%
C. Thalweg	Upstream of pool (structure) centering? (%)	100	100	0	100	
	Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
D. Meanders	Of those eroding, # w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100%
E. Bed	General channel bed aggradation areas (bar formation)	127	127	0	100	
General	Channel bed degradation - areas of increasing down- cutting or head cutting?	127	127	0	100	100%
F. Vanes,	Free of back or arm scour?	2	2	0	100	
Rock/Log	2. Height appropriate?	2	2	0	100	
Drop	Angle and geometry appear appropriate?	2	2	0	100	
Structures	Free of piping or other structural failures?	2	2	0	100	100%
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A

	UT	3, (45 LF)				
Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total number	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Perfomance Mean or Total
A. Riffles	1. Present?	1	1	0	100	
	Armor stable (e.g. no displacement)?	1	1	0	100	
	3. Facet grades appears stable?	1	1	0	100	
	Minimal evidence of embedding/fining?	1	1	0	100	
	5. Length appropriate?	1	1	0	100	100%
B. Pools	Present? (e.g. not subject to severe aggradation or migration?)	0	0	0		
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	0	0	0		
	3. Length appropriate?	0	0	0		
C. Thalweg	Upstream of pool (structure) centering? (%)	100	100	0	100	
	Downstream of pool (structure) centering? (%)	100	100	0	100	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
	Of those eroding, # w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100%
E. Bed	General channel bed aggradation areas (bar formation)	45	45	0	100	
General	Channel bed degradation - areas of increasing down- cutting or head cutting?	45	45	0	100	100%
F. Vanes,	Free of back or arm scour?	1	1	0	100	
Rock/Log	2. Height appropriate?	1	1	0	100	
Drop	Angle and geometry appear appropriate?	1	1	0	100	
Structures	Free of piping or other structural failures?	0	1	0	0	75%
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A

		xfull or Greater than Bankful on Project: DMS Project ID No		
	Date of Data	Data of Front	Method of Data	Gauge Watermark Height (inches)*
	Collection	Date of Event	Collection	Logan Creek Station 30+00
MY2	3/18/2016	2 events: 1 in Dec-15 and 1 in Jan-16.	Crest Gauge	25.75 inches
	8/17/2016	undetermined	Crest Gauge	1.56 inches
MY3	10/26/2017 Between 7/26/2017 and 10/26/2017		Crest Gauge, Photographs	26.04 inches
	10/26/2017	10/23/2017	Crest Gauge, Photographs	17.40 inches

^{*} height indicates the highest position of cork shavings on the dowel.

Crest Gauge reading taken on 10/26/2017 shows two distinct high flow events, the lower of which likely occurred on 10/23/2017.

Crest Gauge reading taken on 10/26/2017 shows two distinct high flow events, the lower of which likely occurred on 10/23/2017.

Wrack lines well back from the stream, indicating wide flooding of the floodplain during the storms in October.

Large amounts of debris scattered across the floodplain indicating significant flooding in October.

MY3 Stream Problem Areas and Photos
Logan Creek Stream Restoration Project, Number #92515

Feature Issue	Station	Suspected Cause	Photo #
Aggradation/Bar Formation	None	None	None
	Station 21+00	Bank slump (approx. 6 ft.) along left bank of main stem. Will be monitored to see if the bank stabilizes in MY4 (CPA 3-2 on CCPV)	14
	Station 11+50	Bank slump (approx. 8 ft.) along right bank of main stem. Will be monitored to see if the bank stabilizes in MY4 (CPA 3-4 on CCPV)	16
	Station 2+10	Flooding during December and January caused a small area of bank scour at this location. (CPA 2-1 on CCPV)	1, 2
Bank Scour	Station 4+60	Flooding during December and January caused a small area of bank scour at this location. (CPA 2-3 on CCPV)	5,6
	Station 11+70	Flooding during December and January caused a small area of bank scour at this location. (CPA 2-4 on CCPV)	7,8
	Station 26+60	Flooding during December and January caused a small area of bank scour at this location. (CPA 2-5 on CCPV)	9,10
	Station 27+00	Flooding during December and January caused a small area of bank scour at this location. (CPA 2-6 on CCPV)	11,12
	Station 23+75	Piping of log structure after the fabric sealing this structure tore (CPA 3-1 on CCPV)	13
	Station 14+75	Piping of log structure after the fabric sealing this structure tore (CPA 3-3 on CCPV)	15
Engineered Structures	UT8 Station 00+40	Piping of log structure on UT-8 near the confluence of UT-8 and Logan Creek (CPA 3-5 on CCPV)	17
	2+00	Piping of log structure after the fabric sealing this structure tore during flooding of December and January. (CPA 2-2 on CCPV) Will be removed from list in MY4	3,4
Encroachments	Station (approximately) 23+00 to 28+00	New maintenance workers mowed the nature trail (an allowance in the easement); however, they mowed a wider width than was agreed to. We discussed this with staff at Lonesome Valley and they were going to discuss this with a new trails manager. (EA-1 on CCPV)	18,19

New Problem Areas for MY3

Existing/Old Problem areas from MY2

Logan Creek Stream Restoration Project - Monitoring Year 3 Stream Problem Area Photos

Photo 1. CPA 2-1 – Station 2+10, small area of bank scour caused by flooding of December and January.

Photo 2. CPA 2-1 – Station 2+10, same area as shown in photo 1 during October 2017 with vegetation stabilizing site. Bank was graded, matting was reinstalled, and live stakes were added during October 2017.

Photo 3. CPA 2-2 – Station 2+00, Piping of log structure after the fabric sealing this structure tore during flooding of December and January.

Photo 4. CPA 2-2 – Station 2+00, Piping structure was repaired in May 2017. Fabric was replaced and substrate was replaced upstream of log structure.

Photo 5. CPA 2-3 – Station 4+60, small area of bank scour caused by flooding of December and January 2016.

Photo 7. CPA 2-4 – Station 11+70, small area of bank scour caused by flooding of December and January 2016.

Photo 9. CPA 2-5 – Station 26+60, small area of bank scour caused by flooding of December and January 2016.

Photo 6. CPA 2-3 – Station 4+60, bank scour area was regraded, matting was reinstalled, and herbaceous vegetation was transplanted in May 2017. Livestakes were installed in October 2017.

Photo 8. CPA 2-4 – Station 11+70, scour area noted in MY2 has stabilized for the most part. Livestakes were planted in the scour area as well as the bank downstream of the problem area in October 2017.

Photo 10. CPA 2-5 – Station 26+60, bank scour area was regraded, matting was reinstalled, and herbaceous vegetation was transplanted in May 2017. Livestakes were installed in October 2017.

Photo 11. CPA 2-6 – Station 27+00, small area of bank scour caused by flooding of December and January 2016.

Photo 13. CPA 3-1 – Station 23+75, piping of log structure after the fabric sealing this structure tore in 2017. This structure will be repaired in 2018.

Photo 15. CPA 3-3 – Station 14+75, piping of log structure after the fabric sealing this structure tore in 2017. This structure will be repaired in 2018.

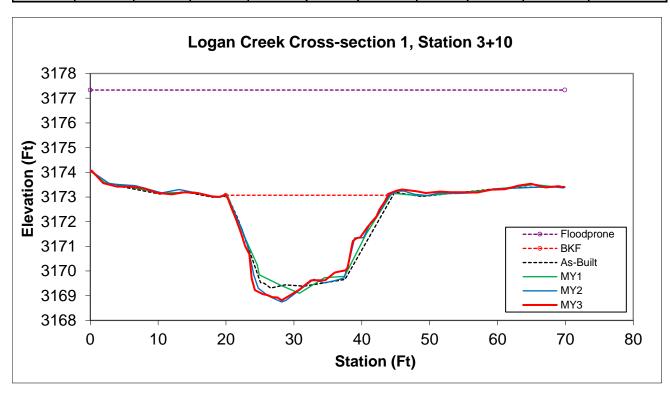
Photo 12. CPA 2-6 – Station 27+00, bank scour area was regraded, matting was reinstalled, and herbaceous vegetation was transplanted in May 2017. Livestakes were installed in October 2017.

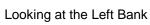
Photo 14. CPA 3-2 – Station 21+00, small bank slump area (approx. 6 ft.) along left bank of main stem. Will be monitored to see if the bank stabilizes in MY4

Photo 16. CPA 3-4 – Station 11+50, small bank slump (approx. 8 ft.) along right bank of main stem. Will be monitored to see if the bank stabilizes in MY4

Photo 17. CPA 3-5 – Station UT8 00+40, piping of log structure on UT-8 near the confluence of UT-8 and Logan Creek

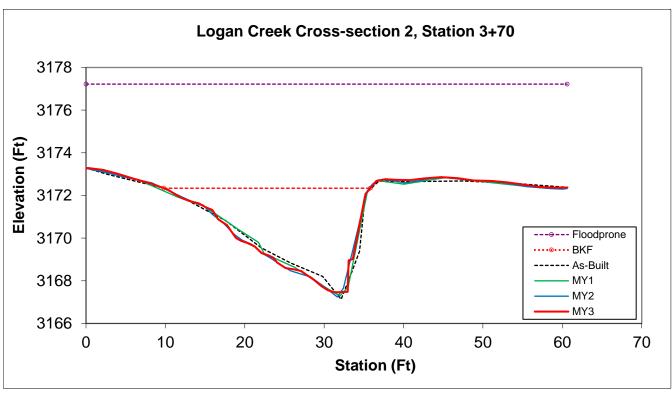
Encroachments

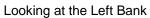

Photo 18. EA 2-1 – Maintenance workers mowed the nature trail wider than the 4-6 feet that had been agreed to earlier, near stationing 23+00 to 28+00.


Photo 19. EA 2-1 – In July of 2017, the path was still being mowed wide through Veg Plot 3.

Permanent Cross-Section 1 (MY3 Data - collected October, 2017)

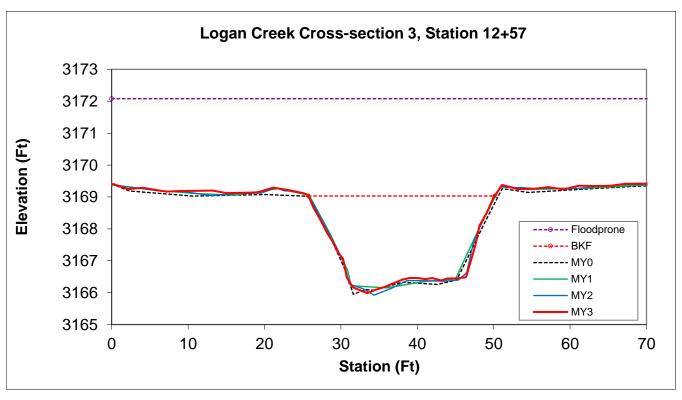
					Max					
	Stream		BKF	BKF	BKF		BH			
Feature	Type	BKF Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev
Riffle	E	64.69	23.95	2.70	4.26	8.87	1.00	2.91	3173.07	3173.07

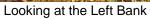



Looking at the Right Bank

Permanent Cross-Section 2 (MY3 Data - collected October, 2017)

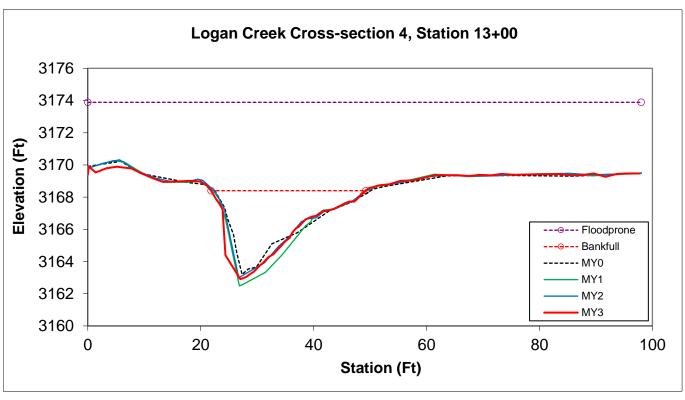
	Stream		BKF	BKF	Max BKF					
Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool	-	66.22	25.98	2.55	4.88	10.19	1.06	2.33	3172.34	3172.66




Looking at the Right Bank

Permanent Cross-Section 3 (MY3 Data - collected October, 2017)

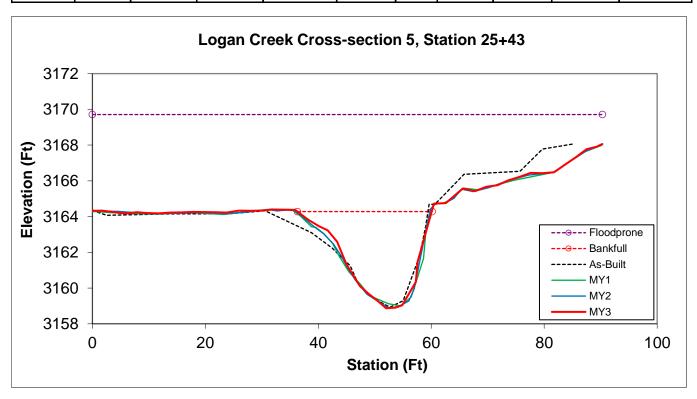
	Stream		BKF	BKF	Max BKF					
Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Е	52.30	24.29	2.15	3.05	11.30	1.03	4.08	3169.03	3969.11

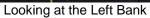


Looking at the Right Bank

Permanent Cross-Section 4 (MY3 Data - collected October, 2017)

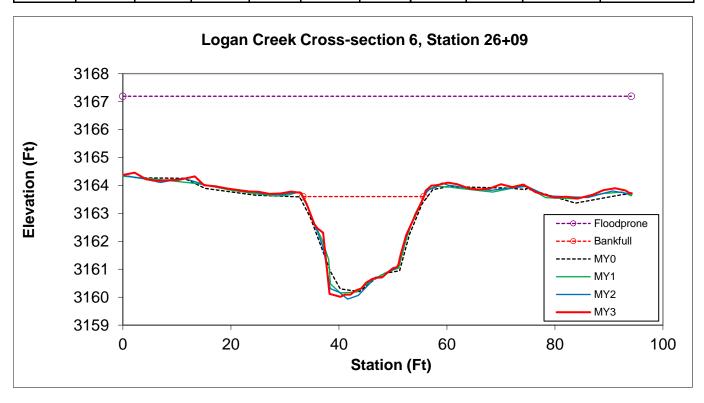
Feature	Stream	BKF Area	BKF Width	BKF	Max BKF	W/D	BH Ratio	ER	BKF Elev	TOB Elev
realure	Type	DNF Alea	vviairi	Depth	Depth	VV/D	DH Kalio	EK	DKL Elev	I OD Elev
Pool	-	70.16	27.38	2.56	5.49	10.70	1.02	3.57	3168.40	3168.54

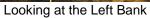



Looking at the Right Bank

Permanent Cross-Section 5 (MY3 Data - collected October, 2017)

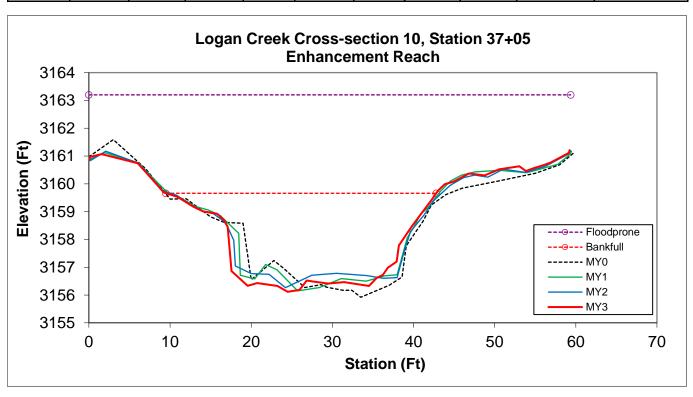
	Stream				Max BKF					
Feature	Type	BKF Area	BKF Width	BKF Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool	-	71.03	23.77	2.99	5.42	7.95	1.01	3.80	3164.28	3164.37

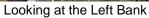



Looking at the Right Bank

Permanent Cross-Section 6 (MY3 Data - collected October, 2017)

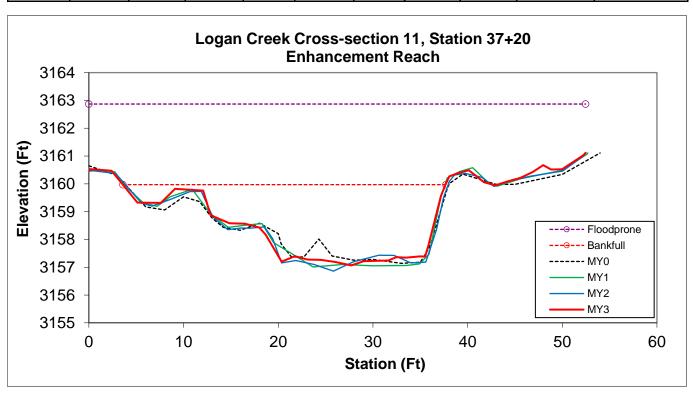
	Stream		BKF	BKF	Max BKF					
Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Е	50.79	22.40	2.27	3.59	9.87	1.04	4.21	3163.60	3163.73

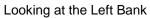



Looking at the Right Bank

Permanent Cross-section 10 (MY3 Data - collected October, 2017)

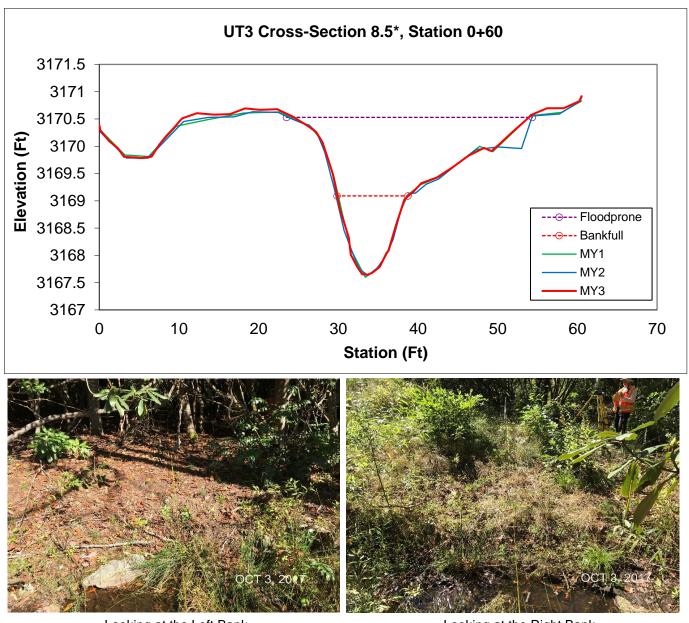
ľ		Stream		BKF	BKF	Max BKF					
١	Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
ĺ	Pool	-	74.72	33.28	2.25	3.54	14.79	1.01	1.78	3159.66	3159.80




Looking at the Right Bank

Permanent Cross-section 11 (MY3 Data - collected October, 2017)

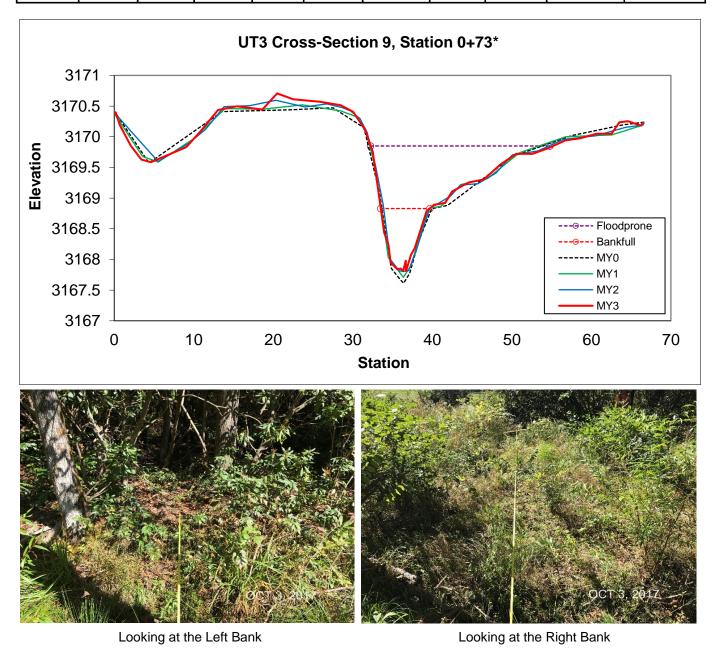
ſ		Stream		BKF	BKF	Max BKF					
١	Feature	Type	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
ľ	Riffle	В	59.43	34.08	1.74	2.90	19.59	1.11	1.54	3159.97	3160.26



Looking at the Right Bank

Permanent Cross-section 8.5 (MY3 Data - collected October, 2017)

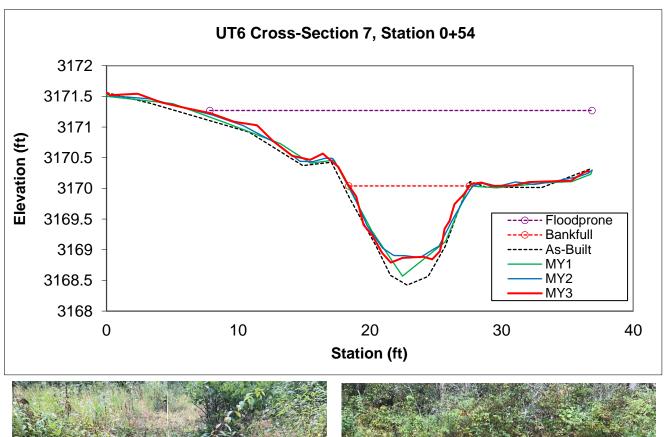
					Max					
	Stream	BKF	BKF	BKF	BKF		BH			
Feature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev
Pool	-	8.05	8.93	0.90	1.44	9.92	1.07	4.52	3169.09	3169.17

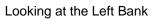

Looking at the Left Bank

Looking at the Right Bank

^{*} This Pool cross-section was not taken for the baseline but was added during MY1 survey and will be continued each year going forward.

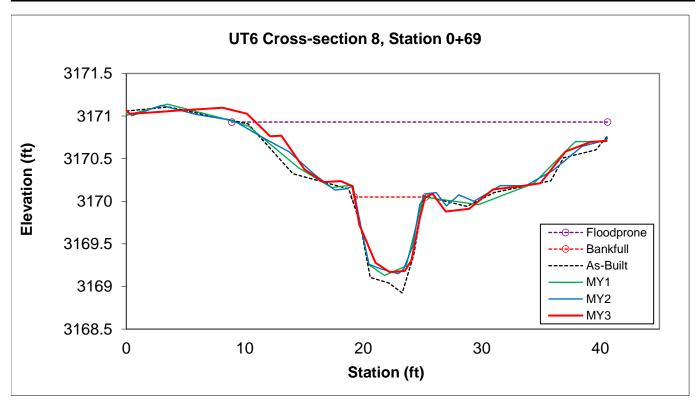
Permanent Cross-section 9 (MY3 Data - collected October, 2017)


ſ						Max					
ı		Stream	BKF	BKF	BKF	BKF		BH			
ı	Feature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev
ſ	Riffle	Е	3.81	6.16	0.62	1.02	9.94	1.06	4.86	3168.83	3168.90


^{*} The stationing shown on this cross section plot has been changed to correct an error shown in the MY0 plots.

Permanent Cross-section 7 (MY3 Data - collected October, 2017)

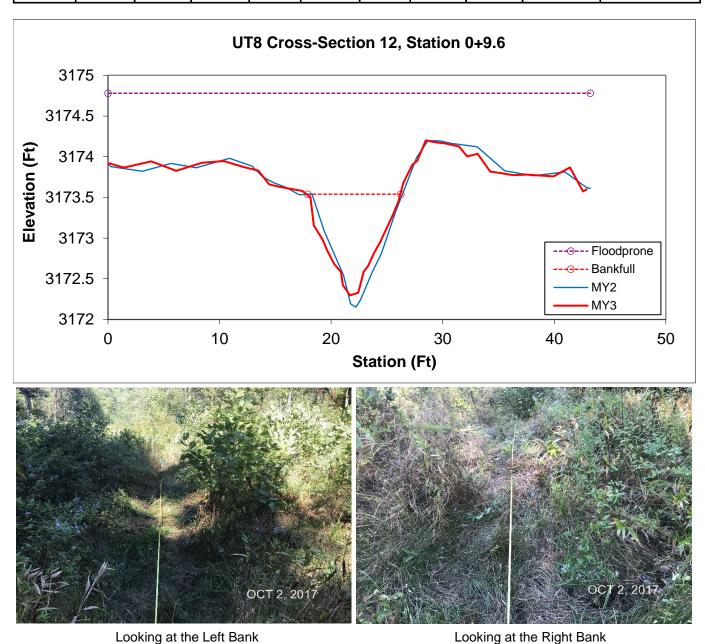
					Max					
	Stream	BKF	BKF	BKF	BKF		BH		BKF	
Feature	Туре	Area	Width	Depth	Depth	W/D	Ratio	ER	Elev	TOB Elev
Pool	-	7.41	9.70	0.81	1.24	11.23	1.08	3.27	3170.04	3170.09



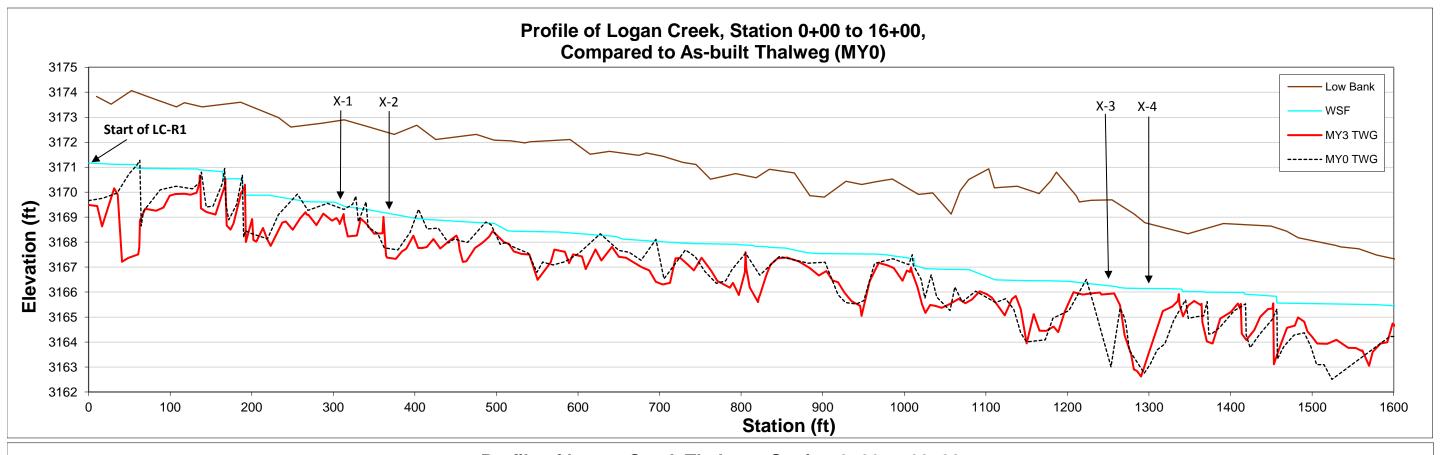
Looking at the Right Bank

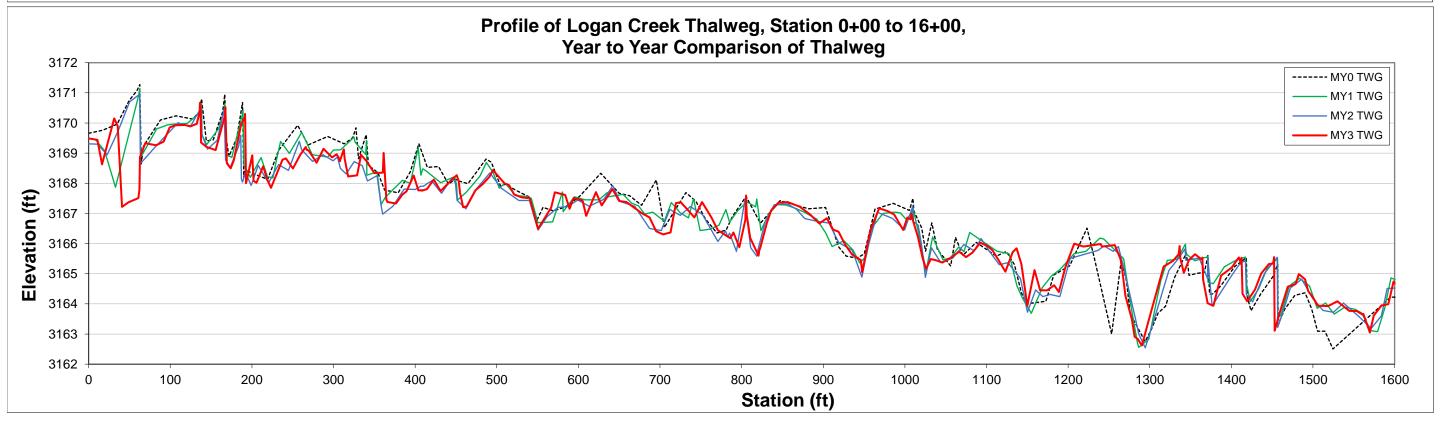
Permanent Cross-section 8 (MY3 Data - collected October, 2017)

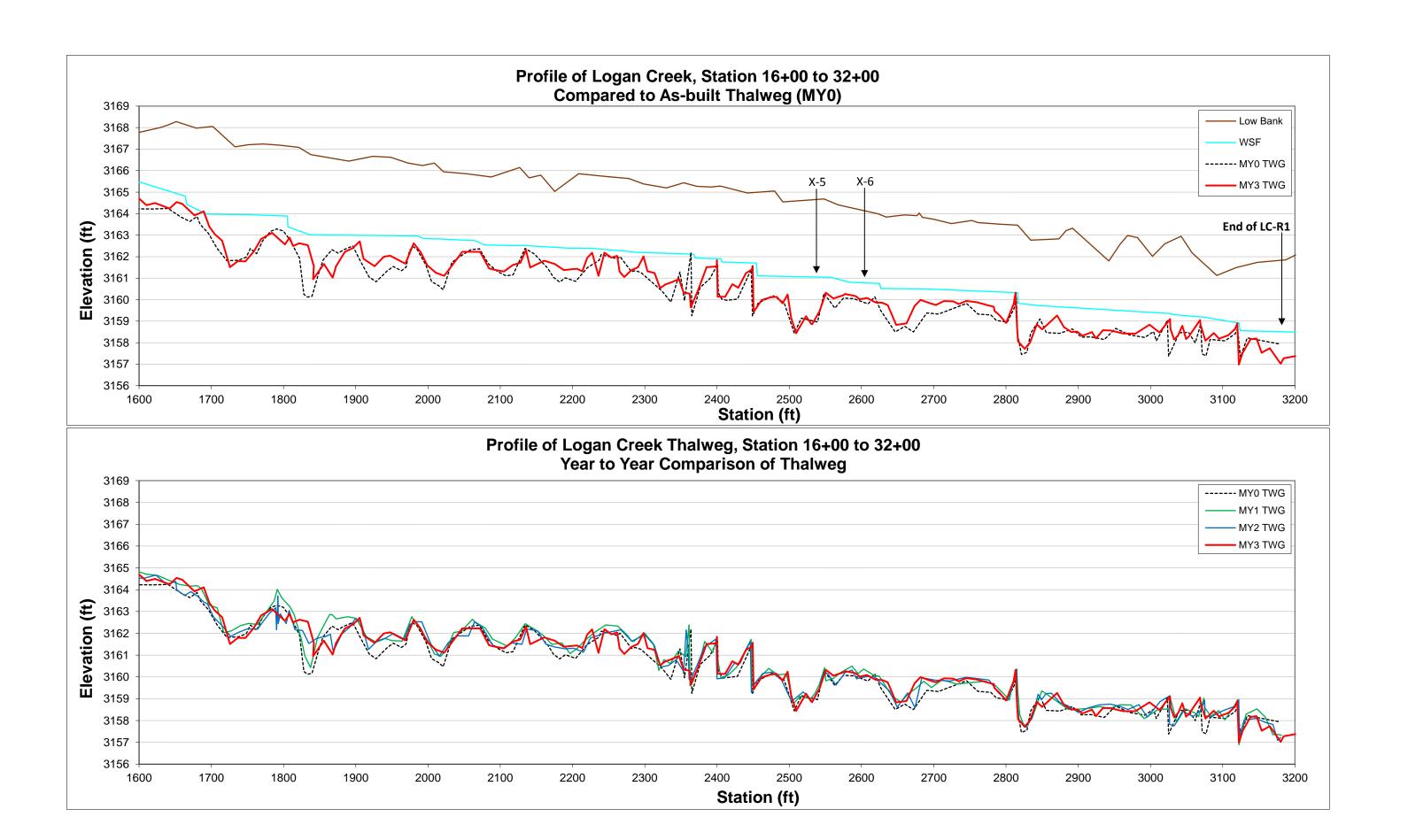
					Max					
	Stream	BKF	BKF		BKF		BH			
Feature	Туре	Area	Width	BKF Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev
Riffle	E	3.78	6.01	0.63	0.88	9.54	1.05	4.93	3170.05	3170.09

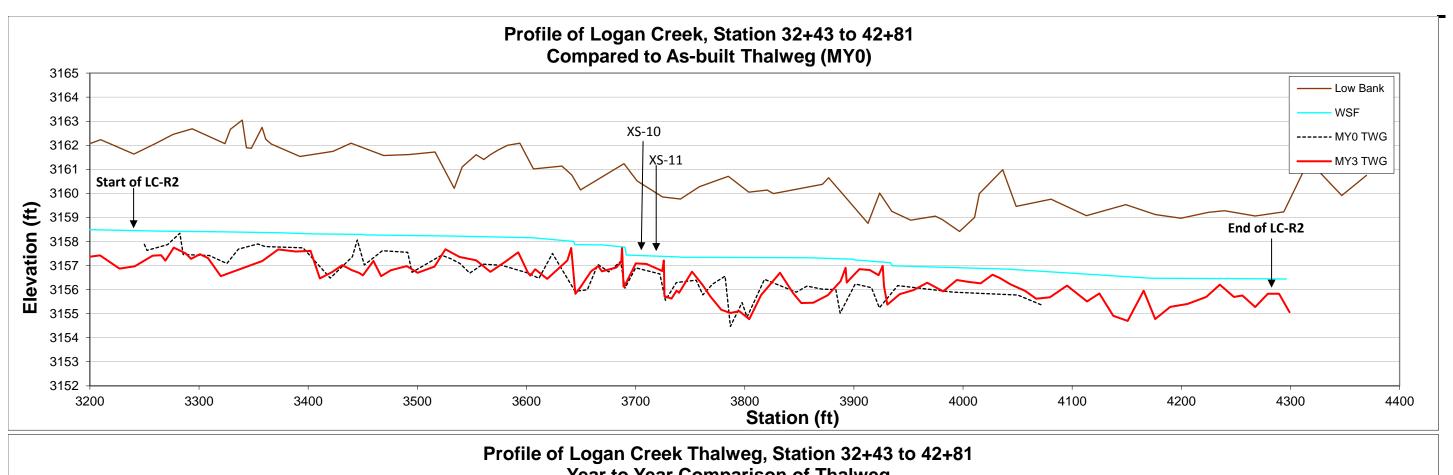


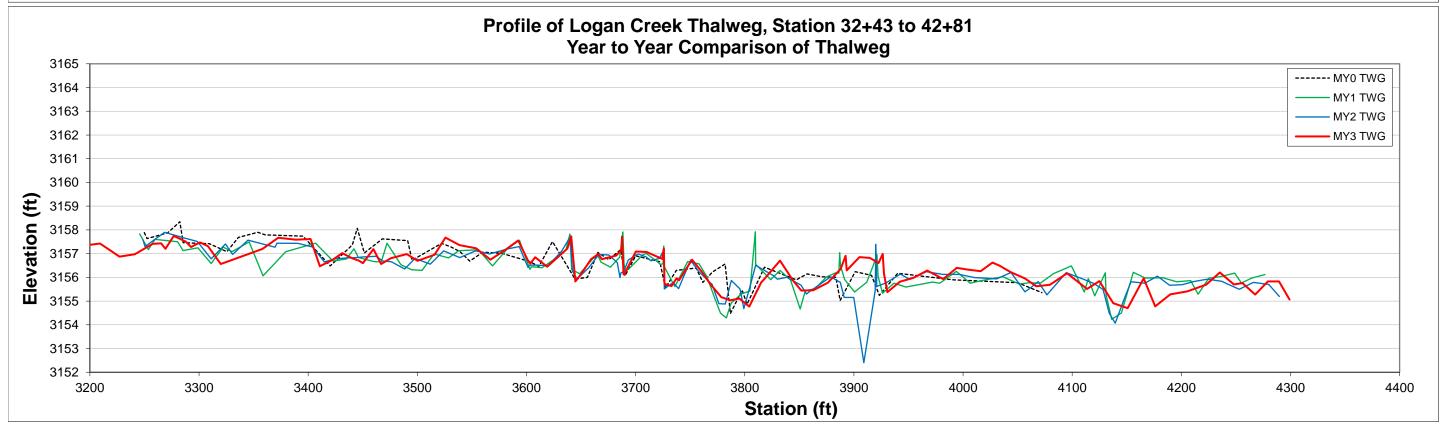
Looking at the Left Bank

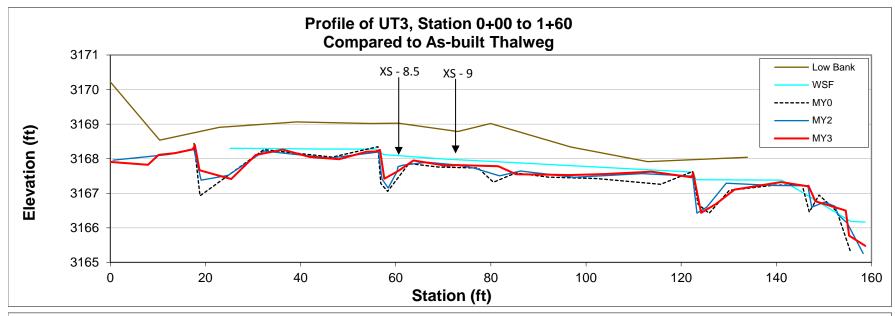

Looking at the Right Bank

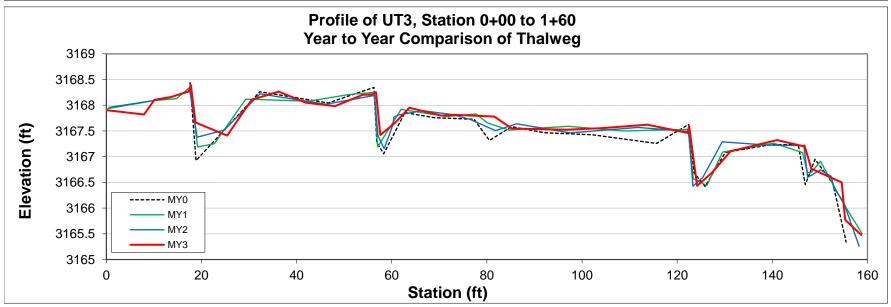

Permanent Cross-section 12 (MY3 Data - collected October, 2017)

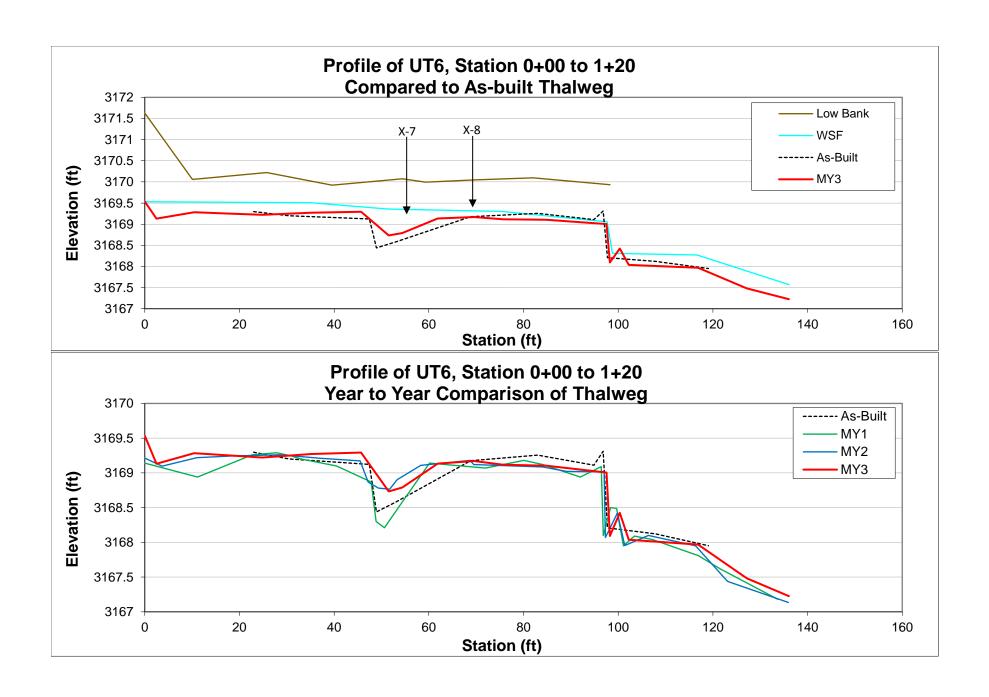

					Max					
	Stream	BKF	BKF	BKF	BKF		BH			
Feature	Type	Area	Width	Depth	Depth	W/D	Ratio	ER	BKF Elev	TOB Elev
Riffle	Е	5.83	8.43	0.69	1.24	12.22	1.00	5.09	3173.54	3173.54

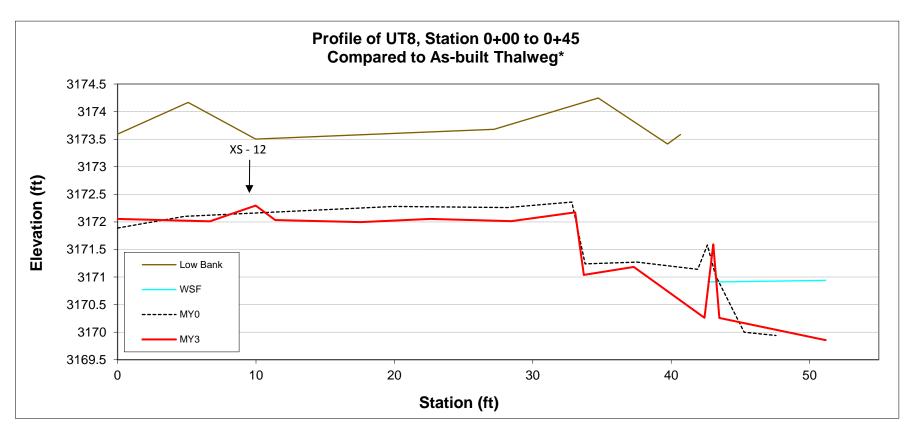


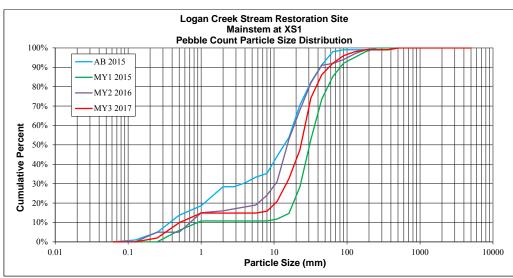

This Riffle cross-section was not taken during AB or MY1 surveys but was added in MY2 and will be continued each year going forward.

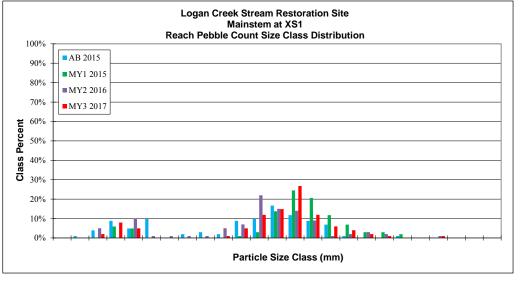








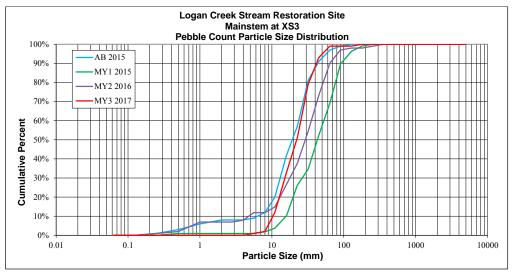

^{*} Note: This profile was added in MY1 because restoration credit is being requested for this reach. However, the profile on this reach was not surveyed and included in the MY0 report.

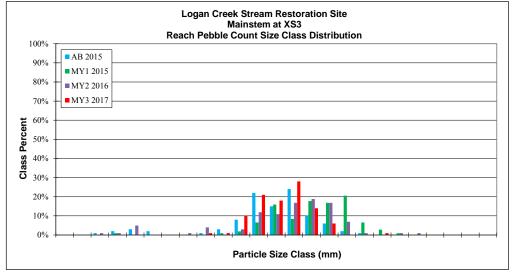

Cross-Section Pebble Count; Monitoring Year 3 Logan Creek Mitigation Project, DMS #92515

SITE OR PROJECT:	Logan Cr
REACH/LOCATION:	Riffle at XS1
FEATURE:	Riffle
DATE:	26-Oct-17

				MY3 2017		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525	2	2%	2%	0.25
Sand	Medium	.2550	8	8%	10%	0.50
	Coarse	.50 - 1.0	5	5%	15%	1.0
	Very Coarse	1.0 - 2.0			15%	2.0
	Very Fine	2.0 - 2.8			15%	2.8
	Very Fine	2.8 - 4.0			15%	4.0
	Fine	4.0 - 5.6			15%	5.6
	Fine	5.6 - 8.0	1	1%	16%	8.0
Gravel	Medium	8.0 - 11.0	5	5%	21%	11.0
Graver	Medium	11.0 - 16.0	12	12%	33%	16.0
	Coarse	16 - 22.6	15	15%	48%	22.6
	Coarse	22.6 - 32	27	27%	74%	32
	Very Coarse	32 - 45	12	12%	86%	45
	Very Coarse	45 - 64	6	6%	92%	64
	Small	64 - 90	4	4%	96%	90
Cobble	Small	90 - 128	2	2%	98%	128
Copple	Large	128 - 180	1	1%	99%	180
	Large	180 - 256			99%	256
	Small	256 - 362			99%	362
Boulder	Small	362 - 512	1	1%	100%	512
Doulder	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		101	100%		

	Summary Data						
	Channel	materials					
D16 =	8.1	D84 =	42.3				
D35 =	16.9	D95 =	82.3				
D50 =	23.3	D100 =	362 - 512				

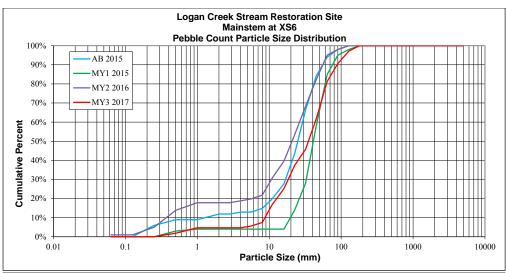


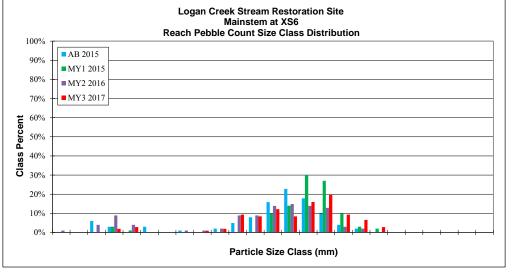

Cross-Section Pebble Count; Monitoring Year 3 Logan Creek Mitigation Project, DMS #92515

SITE OR PROJECT:	Logan Cr
REACH/LOCATION:	Riffle at XS3
FEATURE:	Riffle
DATE:	26-Oct-17

				MY3 2017		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525			0%	0.25
Sand	Medium	.2550			0%	0.50
	Coarse	.50 - 1.0			0%	1.0
	Very Coarse	1.0 - 2.0			0%	2.0
	Very Fine	2.0 - 2.8			0%	2.8
	Very Fine	2.8 - 4.0			0%	4.0
	Fine	4.0 - 5.6	1	1%	1%	5.6
	Fine	5.6 - 8.0	1	1%	2%	8.0
Gravel	Medium	8.0 - 11.0	10	10%	12%	11.0
Graver	Medium	11.0 - 16.0	21	21%	33%	16.0
	Coarse	16 - 22.6	18	18%	51%	22.6
	Coarse	22.6 - 32	28	28%	79%	32
	Very Coarse	32 - 45	14	14%	93%	45
	Very Coarse	45 - 64	6	6%	99%	64
	Small	64 - 90			99%	90
Cobble	Small	90 - 128			99%	128
Copple	Large	128 - 180	1	1%	100%	180
	Large	180 - 256			100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Douiter	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		100	100%		

	Summa	ry Data	
	Channel	materials	
D16 =	11.8	D84 =	36.1
D35 =	16.6	D95 =	50.6
D50 =	22.2	D100 =	128 - 180




Cross-Section Pebble Count; Monitoring Year 3 Logan Creek Mitigation Project, DMS #92515

SITE OR PROJECT:	Logan Cr
REACH/LOCATION:	Riffle at XS6
FEATURE:	Riffle
DATE:	26-Oct-17

				MY3 2017		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525			0%	0.25
Sand	Medium	.2550	2	2%	2%	0.50
	Coarse	.50 - 1.0	3	3%	5%	1.0
	Very Coarse	1.0 - 2.0			5%	2.0
	Very Fine	2.0 - 2.8			5%	2.8
	Very Fine	2.8 - 4.0			5%	4.0
	Fine	4.0 - 5.6	1	1%	6%	5.6
	Fine	5.6 - 8.0	2	2%	7%	8.0
Gravel	Medium	8.0 - 11.0	10	9%	17%	11.0
Graver	Medium	11.0 - 16.0	9	8%	25%	16.0
	Coarse	16 - 22.6	13	12%	37%	22.6
	Coarse	22.6 - 32	9	8%	46%	32
	Very Coarse	32 - 45	17	16%	62%	45
	Very Coarse	45 - 64	21	20%	81%	64
	Small	64 - 90	10	9%	91%	90
Cobble	Small	90 - 128	7	7%	97%	128
Copple	Large	128 - 180	3	3%	100%	180
	Large	180 - 256			100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Domaci	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % c	of whole count		107	100%		

	Summa	ry Data	
	Channel	materials	
D16 =	10.7	D84 =	70.6
D35 =	21.1	D95 =	113.7
D50 =	35.0	D100 =	128 - 180

gan Creek Mainstem rameter USGS								
	Regional Curve Interval ¹	Pre-Existing Condition ¹	Reference Reach Data	Design	As-built	MVI	MY2	MV3
Gauge		_	Right Prong Logan Creek	_		****		****
nsion and Substrate - Riffle	NC Mtn. Regional Curve	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD
BF Width (ft) - Floodprone Width (ft) -	26.4 28.3 -	22.9 27.3 23.8 38.7 6.6 4	- 16.7	- 26.0	23.6 24.3 24.1 25.2 0.67 3	22.6 23.7 24.0 24.3 0.77 3	22.5 26.2 24.3 33.9 4.50 4 >54 >80 >100 4	22.4 26.2 24.1 34.1 4.62 >54 >80 - >100 -
BF Mean Depth (ft)	1.4 1.5	150 22 24 260 04 4	- 106	- 2.3	2.1 2.3 2.2 2.6 0.22 3	2.1 2.3 2.2 2.6 0.21 3	1.8 2.2 2.2 2.7 0.32 4	1.7 2.2 2.2 2.7 0.34
BF Max Depth (ft)	134 13	3.4 3.6 3.5 3.8 0.2 4	1.00	- 4.0	3.1 3.4 3.4 3.7 0.24 3	2.9 3.4 3.5 4.0 0.45 3	3.0 3.5 3.4 4.3 0.53 4	2.9 3.5 3.3 4.3 0.53
BF Cross-sectional Area (ft²)	37.5 42.7 -	55.8 58.0 58.4 59.5 1.36 4		- 58.5	51.7 56.0 53.2 63.0 5.01 3	50.2 54.6 51.2 62.4 5.53 3	51.4 57.7 57.3 64.8 5.74 4	50.8 56.8 55.9 64.7 5.60
Width/Depth Ratio -	37.3 42.7 -	8.9 13.6 9.8 25.7 7.01 4		- 12	9.2 10.7 10.8 12.0 1.12 3	9.3 10.3 10.1 11.6 0.96 3	8.9 12.2 10.6 18.6 3.81 4	8.9 12.4 10.6 19.6 4.24
Entrenchment Ratio -		3.4 11.3 12.0 17.8 5.83 4	- 2.0	- 5.8	2.9 3.6 3.9 4.0 0.50 3	2.9 3.7 4.0 4.1 0.54 3	1.6 3.2 3.5 4.2 1.06 4	1.5 3.2 3.5 4.2 1.08
Bank Height Ratio -		1 1.2 1.1 1.5 0.2 4		- 1.0	1.0 1.00 1.00 1.0 0.00 3	1.0 1.0 1.0 1.1 0.05 3	1.0 1.1 1.0 1.2 0.09 4	1.0 1.0 1.0 1.1 0.04
d50 (mm) -		1 12 13 13 02 1		- 12.4	12.4 12.4 12.4 12.4 0.00 1	30.7 38.3 41.1 43.0 5.41 3	15.2 21.7 20.7 29.2 5.8 3	22.2 26.8 23.3 35.0 5.8
m ass (mm)				144.7	123 123 123 123 123 0.00 1	30.7 30.3 41.1 43.0 3.41 3	13.2 21.7 25.7 25.2 3.0 3	22.2 20.0 25.0 55.0
Channel Beltwidth (ft) -		194 216 217 252 18.13 7	- 80	65 140	130.0 193.2 190.0 258.0 41.45 6	130.0 193.2 190.0 258.0 41.5 6	130.0 193.2 190.0 258.0 41.5 6	130.0 193.2 190.0 258.0 41.5
Radius of Curvature (ft) -		23 32 30 46 8.6 5	- 23	28 75	44.0 63.9 66.1 104.0 17.17 9	44.0 63.9 66.1 104.0 17.2 9		44.0 63.9 66.1 104.0 17.2
Rc:Bankfull width (ft/ft) -		0.85 1.19 1.11 1.7 0.32 5	- 1.38	1.1 2.9	1.80 2.60 2.70 4.30 0.71 9	1.80 2.60 2.70 4.30 0.71 9	1.80 2.60 2.70 4.30 0.71 9	1.80 2.60 2.70 4.30 0.71
Meander Wavelength (ft)		120 177 197 239 46.75 5	- 150	118 236	145.0 236.7 244.5 321.0 48.10 12	145.0 236.7 244.5 321.0 48.1 12	145.0 236.7 244.5 321.0 48.1 12	145.0 236.7 244.5 321.0 48.1
Meander Width Ratio -		4.44 6.56 7.3 8.85 1.73 5	- 4.8	2.5 5.4	6.0 9.7 10.1 13.2 1.98 12	6.0 9.7 10.1 13.2 2.0 12	145.0 236.7 244.5 321.0 48.1 12 6.0 9.7 10.1 13.2 2.0 12	6.0 9.7 10.1 13.2 2.0
e								
Riffle Length (ft) -						25.7 68.1 65.3 149.8 31.6 16	18.6 90.5 93.5 162.3 47.4 9	40.6 105.7 90.6 238.8 61.8
Riffle Slope (fl/ft) -			- 0.019	0.003 0.007		0.0009 0.0079 0.0049 0.0218 0.0065 16	0.0025 0.0076 0.0075 0.0162 0.0042 9	0.0060 0.0046 0.0034 0.0118 0.0036
Pool Length (ft) -						31.0 66.4 64.5 112.2 25.4 19	48.1 89.2 82.2 150.6 29.1 14	24.19 89.2 82.2 150.6 29.1
Pool Spacing (ft) -			- 75	94 165		86.6 148.6 143.5 292.6 51.9 20	50 127.4 119.8 264 46.3 24	38 152.3 126.5 524 109.0
Pool Max Depth (ft) -		2.9 3.8 4.0 4.5 0.64 3	- 2.28	- 6.00	5.2 5.3 5.2 5.4 0.1 3	5.1 5.4 5.3 5.9 0.36 3	5 5.3 5.4 5.4 0.15 3	3 3.3 3.3 3.9 0.40
Pool Volume (ft ³) -								
rate and Transport Parameters								
Ri% / Ru% / P% / G% / S% -	T - T - T -							- - - - -
SC% / Sa% / G% / B% / Be% -								
d16 / d35 / d50 / d84 / d95 -		0.8 / 5.8 / 12.4 / 35.4 / 169.6		<u> </u>	mean 5.1 / 10.9 / 16.5 / 34.8 / 55.9	mean 17.3/28.6/36.9/71.8/123.1	mean 6.7/ 16.3 / 22.2 / 45.4 / 91.4	mean 10.2/18.2 / 26.8 / 49.7 / 82.2
Reach Shear Stress (competency) lb/f ² -					- <u> </u>			
Max part size (mm) mobilized at bankfull (Rosgen Curve) -								
Stream Power (transport capacity) W/m ²								
onal Reach Parameters								
Drainage Area (SM)	2.1 to 2.67	2.1 at upper end of project to 2.67 towads end of project	- 0.83	2.1 at upper end of project to 2.67 towads end of project	2.1 at upper end of project to 2.67 towads end of project	2.1 at upper end of project to 2.67 towads end of project	2.1 at upper end of project to 2.67 towads end of project	2.1 at upper end of project to 2.67 towads end of p
Impervious cover estimate (%)				- 2.67	2.67	2.67	2.67	- 2.67
Rosgen Classification -		- C4 to E4	- C4	- C4	- C4	- C4	- C4	- C4
BF Velocity (fps)			3.55	- 4.31	4.33	4.20	4.20	- 4.20
BF Discharge (cfs)	205.7 237.0		- 98	- 271.5	242.6	264.8	264.8	- 264.8
35 -								
Channel length (ft)		- 4,700		- 4,101	4,172	4,172	4,172	- 4,172
Sinuosity -			- 2.01	- 1.3	- 1.31	- 1.34	1.34	- 1.34
Water Surface Slope (Channel) (ft/ft) -			- 0.0079	- 0.0035				
BF slope (ft/ft) - Bankfull Floodplain Area (acres) -	1 - 1 - 1 -					- 0.0033	- 0.0033	- 0.0033
Bankruii Fioodpiain Area (acres)			- 0.016	- 0.0047	- 0.0052	- 0.0033	- 0.0033	- 0.0033
DEHLY 10/ (10/ (M0/ (10/ (X/10/ (E0/			- 0.016	- 0.0047				
BEHI VL% / L% / M% / H% / VH% / E% -			- 0.016	- 0.0047				
BEHI VL% / L% / M% / H% / VH% / E% - Channel Stability or Habitat Metric -			- 0.016	- 0.0047				
BEHI VL% / L% / M% / H% / VH% / E% - Channel Stability or Habitat Metric - Biological or Other -	nes D.R. Clinton, J.M. Patterson, 2000. Bankfi	Itali Resional Curves for North Carolina Mountain Streams. In: AWRA Conference Proceed	ins D.I. Sans editor American Water Resources Socialty Conference on Water Resources					
BEHI VL% / L% / M% / H% / VH% / E% - Channel Stability or Habitat Metric -	ags, D.R. Clinton, J.M. Patterson. 2000. Bankfu	lull Regional Curves for North Carolina Mountain Streams. In: AWRA Conference Proceed		n Extreme Environments Anchorage, Alaska.				
BEHI VL% / L% / M% / H% / VH% / E% - Channel Stability or Habitat Metric - Biological or Other -	ngs, D.R. Clinton, J.M. Patterson. 2000. Bankfu	lill Regional Curves for North Carolina Mountain Streams. In: AWRA Conference Proceed	- 0.016					
BEHI UL76, IL76/, M%/, IH8/, VHP6/, E%/ Channel Stability or Habitat Metric Biological or Other an, W.A., D.E. Wue, M.A. Walker, R. Morris, MA Cantrell, M. Clemmoes, G.D. Jennin			ings, D.L. Kme, editor. American Water Resources Specialty Conference on Water Resources in	n Extreme Environments. Anchorage, Alaska	0.0052	- 0.0044	- 0.0044	- 0.0044
BEHI VLS/ LS/ LS/ M9/: H9/: VLHS/ ES/ Channel Stability or Habita Metric Biological or Other us, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Castrell, M. Clemmons, G.D. Jennis USGS USGS USGS		uil Regional Curves for North Carolina Mountain Streams. In . AWRA Conference Proceed Pre-Existing Condition ¹	ings, D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources in					
BEHI VLN/ L 1.8/ M9/ I Pb/ V VH9/ E'9/ - Channel Stability or Habitat Metric Biological or Other - In, W.A., D.E. Wise, M.A. Walker, R. Morris, MA Cantrell, M. Clemmons, G.D. Jennie USGS Gauge	Regional Curve Interval ¹		ings, D.L. Kme, editor. American Water Resources Specialty Conference on Water Resources in	n Extreme Environments. Anchorage, Alaska	As-built	- 0.0044	- 0.0044	- 0.0044
BEHI VL% / L% / M% / FW / VH% / E% / E% - Channel Stability or Habitat Metric - Biological or Other - un, W.A., D.E. Weie, M.A. Walker, R. Morris, MA Cantrell, M. Clemmons, G.D. Jennir USGS Gauge		Pre-Existing Condition ¹	ings, D.L. Kane, editor. American Water Resources Specialty Conference on Water Resources in Reference Reach Data Morgan Creek	Bestrene Environments Anchorage, Alaska. Design Min Mean Med Max SD n	As-built Min Mean Med Max SD n	- 0.0044	- 0.0044	- 0.0044
BEHI VL7s/ L7s/ M%/ FPs/ V4T%/ E% Channel Stability or Habitat Metric Biological or Other an, W.A., D.E. Wee, M.A. Walker, R. Merris, M.A. Cantrell, M. Clemmons, G.D. Jennir USGS Gauge sion and Substrate - Riffle BF Width (ft) Floodprone Width (ft)	Regional Curve Interval ¹ NC Mtn/NC Pied. Rural	Pre-Existing Condition ¹	Reference Reach Data Morgan Creek Min Mean Med Max SD n	Design Design	As-built Min Mean Med Max SD n	- 0.0044	- 0.0044	- 0.0044
BEHI VLS/ L'8/ M9/ H9/ VH9/ E'9 Channel Stability or Habitan Meric Biological or Other a, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Camedi, M. Ctemmons, G.D. Jennir eter USGS Gauge BF Width (ft) BF Width (ft)	Regional Curve Interval ¹ NC Mtn/NC Pied. Rural	Pre-Existing Condition ¹	Reference Reach Data Morgan Creek Min Mean Med Max SD n - 1.06 - 1.106 - 1.106 - 1.06	Bestrene Environments Anchorage, Alaska. Design Min Mean Med Max SD n	As-built As-bui	Min Mean Med Max SD n	My2 Min Mean Med Max SD n - 5.8 1	- 0.0044
BEHI VLS/ LS/ M9/ H9/ VH9/ E9/ - Channel Stability or Habitat Metric Biological or Other - In, WA, DE Wise, M.A. Wälker, R. Morris, MA Cantrell, M. Clemmors, G.D. Jenni Exter USGS Gauge BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Max Depth (ft) BF Max Depth (ft)	Regional Curve Interval NC Mtn./NC Pied. Rural 5.3 4.1 -	Pre-Existing Condition ¹	Comparison Com	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	MYI Min Mean Med Max SD n - S9 1 - 0.70 - 11 - 1.1 1	Min Mean Med Max SD n - 5.8 1 - 0.70 - 11 - 1.0 - 1.0 - 1	MY3 Min Mean Med Max SD - 62
BEHI VLS-/ LS-/ M9/: H9-/ VLH9-/ EP-/ Channel Stability or Habita Metric Biological or Other a, W.A., D.E. Wise, M.A. Walker, R. Marris, M.A. Castrell, M. Clemmons, G.D. Jenni eter USGS Gauge ion and Substrate - Riffle BF Width (ft) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Cross-sectional Area (ft) - BF Cross-sectional Area (ft)	Regional Curve Interval ¹ NC Mtn/NC Pied. Rural 5.3 4.1	Pre-Existing Condition ¹	Reference Reach Data Morgan Creek Min Mean Med Max SD n	Compared to the compared to	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 - 1 - 0.70 - 1 - 1.1 1 - 1.4 1 1 1	Min Mean Med Max SD n - 22.6 1 - 1.0 - 1 - 1.0 1 - 1.0 1 - 1.0 1	Min Mean Med Max SD - 62
BEHI VLS/ LS/ M9/ FM9/ VH9/ FM9 / EM9 Channel Stability or Habitat Metric Biological or Other m, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Camrell, M. Clemmons, G.D. Jennir Cter USGS Gauge sion and Substrate - Riffle BF Width (ft) - Floodprone Width (ft) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Man Depth (ft) - BF Cross-sectional Area (ft') - Width Depth Ratio -	Regional Curve Interval NC Mtn./NC Pied. Rural 5.3 4.1 -	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	MY1 Min Mean Med Max SD n - 281 - 1 - 0.70 - 1 - 1.1 - 1 - 4.1 - 1 - 8.5 - 1	My2 Min Mean Med Max SD n - 22.6 1 - 10, 700 1 - 40 1 - 8.4 1	MY3 Min Mean Med Max SD - 62
BEHI VLS/ LS/ M9/; H9/; VH9/; E9/; Channel Stability or Habita Metric Biological or Other Biological or Other Biological or Other Commons, GD Jenni BY BY BY BY BY BY BY BY BY B	Regional Curve Interval NC Min /NC Pied Rural 5.3 4.1	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n -	Min Mean Med Max SD - 62
BEHI VLS/ LS/ M9/, H9/, VH9/, E9/ Channel Stability or Habitan Meric Biological or Other m, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Camrell, M. Clemmons, G.D. Jennir eter dion and Substrate - Riffle BF Waidth (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft) Width Depth Ratio Finterchment Ratio Brank Height Ratio Brank Height Ratio Brank Height Ratio Brank Height Ratio	Regional Curve Interval NC Min /NC Pied Rural 5.3 4.1	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	MY1 Min Mean Med Max SD n - 281 - 1 - 0.70 - 1 - 1.1 - 1 - 4.1 - 1 - 8.5 - 1	My2 Min Mean Med Max SD n - 22.6 1 - 10, 700 1 - 40 1 - 8.4 1	MY3 Min Mean Med Max SD - 62
BEHI VLS/ LS/ M9/; H9/; VH9/; E9/; Channel Stability or Habita Metric Biological or Other Biological or Other Biological or Other Commons, GD Jenni BY BY BY BY BY BY BY BY BY B	Regional Curve Interval NC Min /NC Pied Rural 5.3 4.1	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n -	Min Mean Med Max SD - 62
BEHI VL% / L% / M% / H% / VH% / E% - Channel Stability or Habitan Metric Biological or Other an, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Camred, M. Clemmons, G.D. Jennir steler USGS Gauge BF Width (ft) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Mean Depth (ft) - BF Cross-sectional Area (ft) - Width / Depth Ratio - Entrenchment Ratio - Bank Height Ratio - Bank	Regional Curve Interval NC Min /NC Pied Rural 5.3 4.1	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n -	Min Mean Med Max SD - 62
BEHI ULA's (L'94', M%); H% (VH%') E% Channel Stability or Habitan Meric Biological or Other an, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Cannell, M. Clemmons, G.D. Jennis storn and Substrate - Riffle BF With (ft) Floodprone Within (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft) Withh Depth Ratio Entrenchment Ratio Bank Height Ratio d5 (mm) Channel Beltwidth (ft) - Channel Beltwidth (ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Comparison Com	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n -	Min Mean Med Max SD - 62 0.060 1.0 1.0 3.8 9.9 4.9
BEHI VL7s / L7s / M% / H% / VH% / E% / E% Channel Stability or Habitat Metric Biological or Other an, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Canredl, M. Clemmons, G.D. Jennin eter USGS Gauge stion and Substrate - Riffle BF Walth (th) Floodprone Width (th) Floodprone Width (th) BF Max Depth (th) BF Amax Depth (th) BF Cross-sectional Area (th) Width/Depth Ratio Entrenchment Ratio Bank Rieight Ratio - Bank Rieight Ratio - Channel Beltwidth (th) Radius of Curvarture (th) Radius of Curvarture (th)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n -	Min Mean Med Max SD - 62
BEHI ULA's (L'94', M%); H% (VH%') E% Channel Stability or Habitan Meric Biological or Other an, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Castrell, M. Clemmous, G.D. Jennis Leter USGS Gauge stion and Substrate - Riffle BF Width (ft) - BF Mean Depth (ft) - BF Max Depth (ft) - BF Max Depth (ft) - BF Max Depth (ft) - BF Cross-sectional Area (ft) Width/Depth Ratio Entrenchment Ratio - Bank Height Ratio - d50 (mm) - Channel Beltwidth (ft) - Radius of Curvature (ft) - Radius of Curvature (ft) - Redias of Curvature (ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n -	Min Mean Med Max SD - 62 0.060 1.0 1.0 3.8 9.9 4.9
BEHI VLS/ LS/ M9/, H9/, VH9/, E9/ Channel Stability or Habita Meric Biological or Other n, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Camerli, M. Clemmons, G.D. Jenni eter tion and Substrate - Riffle BF Wath (h) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio G.O (mm) Channel Beltwidth (ft) Radius of Curvature (ft) Radius of Curvature (ft) Red Beltwalth (ft/ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n - 5.8 1 - 22.6 1 - 1.0 1 - 4.0 1 - 8.4 1 - 3.9 1 - 1 - 1 - 1.3 1 - 1 - 1 - 1 - 3.9 1	Min Mean Med Max SD - 62
BEHI VLS/ LS/ M9/ H9/ VH8/ F2/ Channel Stability or Habita Metric Biological or Other Biological or Other Biological or Other Biological or Other USGS Gauge BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Max Depth (ft) BF Max Depth (ft) BF Max Depth (ft) Gentlement Ratio Bank Height Ratio Channel Beltwidth (ft) Radius of Curvature (ft) Radius of Curvature (ft) Radius of Curvature (ft) Rechankfull width (ft)ft) Rechankfull width (ft)ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	As-built Min Mean Med Max SD n	Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 0.70 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1	Min Mean Med Max SD n - 5.8 1 - 22.6 1 - 1.0 1 - 4.0 1 - 8.4 1 - 3.9 1 - 1 - 1 - 1.3 1 - 1 - 1 - 1 - 3.9 1	Min Mean Med Max SD - 62
BEHI VLS / LS / MS / HS / VHS / ES / ES / Channel Stability or Habitan Metric Biological or Other a, W.A., D.E. Wist, M.A. Walker, R. Mortis, M.A. Cuntedl, M. Clemmons, G.D. Jennir Steer USGS Gauge Steer BF Wath (h) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Mean Depth (ft) - BF Cross-sectional Area (ft) Width/Depth Ratio Entrenchment Ratio - Brank Height Ratio - Channel Beltwidth (ft) - Red. Beltwidth (ft) - Meander Wavelength (ft) - Meander Width Ratio - Meander Width Ratio	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design Design Design Design Design Design Design Design Desig	As-built As-built Min Mean Med Max SD n 6.1 6.2 6.2 6.3 0.06 2 27 0.70 0.70 0.80 0.02 2.00 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.4 5 4.6 4.6 4.6 0.1 2 8.1 8.4 8.4 8.7 0.3 2 1.4 8.1 8.4 8.4 8.7 0.3 2 1.4 1.0 1.0 1.0 1.0 0.0 2 1.1 1.0 1.0 1.0 1.0 0.0 2 1.1 1.0 1.0 1.0 1.0 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.2 1.2 1.2 0.0 2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	MYI Min Mean Med Max SD n - 59 - 1 - 0.70 - 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0	My2 Min Mean Med Max SD n -	Min Mean Med Max SD - 62
BEHI UL'A' (L'84' M%) / H%) / VH% / E% Channel Stability or Habitan Meric Biological or Other Biological or Other as, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Cannell, M. Clemmens, G.D. Jennis Letter USGS Gauge Sion and Substrate - Riffle BF Witch (ft) - BF Mean Depth (ft) - BF Max Depth (ft) - BF Max Depth (ft) - BF Cross-sectional Area (ft)* Width/Depth Ratio - Enterenchment Ratio - Bank Rieight Ratio - dS0 (mm) - Channel Beltwidth (ft) - Redus of Curvature (ft) - Meander Width Ratio - Meander Width Ratio - Riffle Length (ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	As-built As-bui	My1 Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 4.1 1 - 4.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0	MY2 Min Mean Med Max SD n - 5.8 1 - 0.70 1 - 1.0 1 - 4.0 1 - 3.9 1 - 1.0 - 1 - 1.0 - 1	- 0.0044
BEHI VLPs / LPs / MPs / HPs / VHPs / EPs Channel Stability or Habitat Metric Biological or Other m, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Cannell, M. Clemmons, G.D. Jennin etter USGS Gauge stion and Substrate - Riffle BF Width (ft) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Cross-sectional Area (ft) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio - 450 (mm) - Channel Beltwidth (ft) Rei Stankfull width (ft) Rei Stankfull width (ft) Meander Wavelength (ft) - Meander Wavelength (ft) Meander Wavelength (ft) - Meander Width Ratio - Riffle Length (ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	As-built Min Mean Med Max SD n 6.1 6.2 6.2 6.3 0.06 2 27 0.70 0.70 0.80 0.02 2.00 1.1 1.2 1.2 1.2 0.0 2 4.5 4.6 4.6 4.6 0.1 2 8.1 8.4 8.4 8.7 0.3 2 1.4 8.1 8.4 8.4 8.7 0.3 2 1.1 1.0 1.0 1.0 1.0 0.0 2 1.1 1.0 1.0 1.0 1.0 0.0 2 1.1 1.1 1.2 1.2 1.2 1.2 0.0 2 1.1 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.1 1.2 1.2 1.2 0.0 2 1.2 1.2 1.2 0.0 2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	MY1 Min Mean Med Max SD n - 5.9 - 1 - 28.1 1 - 1.1 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0	Min Mean Med Max SD n - 5.8 1 - 22.6 1 - 1.0 1 - 1.0 1 - 8.4 1 - 8.4 1 - 1.0 - 1 - 1.0 -	Min Mean Med Max SD - 62
BEHI VLFs / LFs / M% / HFs / VHFs / EFs Channel Stability or Habitat Metric Biological or Other an, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Camrell, M. Clemmons, G.D. Jennir eter	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	As-built As-bui	My1 Min Mean Med Max SD n - 28.1 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 2.1 1 - 2.1 1 - 2.1 1 - 1.1 1 - 1.1 1 - 2.1 1 - 2.1 1 - 3.5 1 - 4.0 1 - 1.0 1 - 1.0 1 - 1.0	MY2 Min Mean Med Max SD n - 5.8 1 - 22.6 1 - 10 1 - 4.0 1 - 3.9 1 - 1.0 1 - 1 - 1 - 1.0 1 - 1 - 1 - 4.0 1 - 1 - 1 - 5.8 1 - 1	- 0.0044
BEHI ULS, LTs, LTs, LTs, LTs, LTs, LTs, LTs, LTs	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 59 1 - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 20.0000 0.0032 0.0032 0.0064 0.0032 2 5.68 11.56 11.70 17.29 4.70 3 21.23 42.9 38.02 69.37 20 3	Min Mean Med Max SD n	Min Mean Med Max SD - 62 10.060 10.0 10.0 10.0 11.1
BEHI VLPs / LPs / MPs / HPs / VHPs / EPs Channel Stability or Habitat Metric Biological or Other WA, DE Wise, MA. Walker, R. Merris, MA Canrell, M. Clemences, G.D. Jenni eter USGS Gauge Sion and Substrate - Riffle BF Wath Depth (f) BF Mean Depth (f) BF Mean Depth (f) BF Cross-sectional Area (f) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Channel Beltwidth (f) Redaws of Curvature (f) Redaws of Curvature (f) Redawd of Wather (f) Meander Wavelength (f) Meander Wavelength (f) Meander Wavelength (f) Meander Width Ratio Riffle Length (f) Pool Max Depth (f)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	As-built As-bui	My1 Min Mean Med Max SD n - 28.1 1 - 1.1 1 - 4.1 1 - 8.5 1 - 4.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 2.1 1 - 2.1 1 - 2.1 1 - 1.1 1 - 1.1 1 - 2.1 1 - 2.1 1 - 3.5 1 - 4.0 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.0	MY2 Min Mean Med Max SD n - 5.8 1 - 22.6 1 - 10 1 - 4.0 1 - 3.9 1 - 1.0 1 - 1 - 1 - 1.0 1 - 1 - 1 - 4.0 1 - 1 - 1 - 5.8 1 - 1	My3 Min Mean Med Max SD -
BEHI VLSs / LSs / MSs / HSs / VFHS / EPs / EPs / Channel Stability or Habitan Metric Biological or Other Stability or Manual Metric Biological or Other Stability or Manual Metric Biological or Other Stability or Manual Metric Biological or Other Biological O	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 59 1 - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 20.0000 0.0032 0.0032 0.0064 0.0032 2 5.68 11.56 11.70 17.29 4.70 3 21.23 42.9 38.02 69.37 20 3	Min Mean Med Max SD n	Min Mean Med Max SD - 62 10 226 10 110 3.8 19.9 1.1
BEHI VLS / L. % / M% / H% / VH% / E% / E% Channel Stability or Habitan Meric Biological or Other a, W.A., D.E. Wist, M.A. Walker, R. Mortis, M.A. Cuntedl, M. Clemmons, G.D. Jennir Steer USGS Gauge Steer BF Wath (h) - Floodprone Width (ft) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Mean Depth (ft) - BF Cross-sectional Area (ft) Width/Depth Ratio Entrenchment Ratio - Bank Height Ratio - Channel Beltwidth (ft) - Re. Bank Hail width (ft ft) - Re. Bank Hail width (ft ft) - Re. Bank Height Ratio - Channel Beltwidth (ft) - Re. Bank Hight Width (ft) - Re. Bank Hight Width (ft) - Re. Bank Height Ratio Channel Beltwidth (ft) - Re. Bank Hight Width (ft) - Re. Ban	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 59 1 - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 20.0000 0.0032 0.0032 0.0064 0.0032 2 5.68 11.56 11.70 17.29 4.70 3 21.23 42.9 38.02 69.37 20 3	Min Mean Med Max SD n	Min Mean Med Max SD - 62
BEHI ULFA / LPs/ / M% / HPs/ VHPs/ EPs/ Channel Stability or Habitan Meric Biological or Other as, W.A., D.E. Wise, M.A. Walker, R. Merris, M.A. Carnell, M. Clemmeus, G.D. Jennis eter USGS Gauge Sion and Substrate - Riffle BF Width (ft) - BF Mean Depth (ft) - BF Max Depth (ft) - BF Aga Depth (ft) - BF Max Depth (ft) - BF Aga Depth (ft) - BF Max Depth (ft) - BF Max Depth (ft) - Garden Area (ft) - Width/Depth Ratio - Entrenchment Ratio - Bank Height Ratio - d50 (mm) - Channel Beltwidth (ft) - Radius of Curvature (ft) - Re:Bankfull width (ft)ft) - Meander Wavelength (ft) - Meander Wavelength (ft) - Riffle Length (ft) - Riffle Length (ft) - Pool Spacing (ft) - Pool Max Depth (ft) - Pool Valume (ft)	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 59 1 - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 20.0000 0.0032 0.0032 0.0064 0.0032 2 5.68 11.56 11.70 17.29 4.70 3 21.23 42.9 38.02 69.37 20 3	Min Mean Med Max SD n	Min Mean Med Max SD - 62
BEHI VLPs / LPs / MPs / HPs / VHPs / EPs Channel Stability or Habitat Metric Biological or Other m, W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Cannell, M. Clemmous, G.D. Jennin etter USGS Gauge stion and Substrate - Riffle BF Width (ft) - Floodprone Width (ft) - BF Mean Depth (ft) - BF Mean Depth (ft) - BF Cross-sectional Area (ft) - Width/Depth Ratio - Entrenchment Ratio - Bank Height Ratio - G50 mm) - Channel Beltwidth (ft) - Radius of Curvature (ft) - Redission of Curv	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 59 1 - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 20.0000 0.0032 0.0032 0.0064 0.0032 2 5.68 11.56 11.70 17.29 4.70 3 21.23 42.9 38.02 69.37 20 3	Min Mean Med Max SD n	Min Mean Med Max SD - 62 10.060 10.0 10.0 11.0 3.8 9.9 11.1 -
BEHI ULFA (L. % / M% / H% / VH% / E) Channel Stability or Habitan Meric Biological or Other Biological or Other Biological or Other Biological or Other USGS Gauge Sion and Substrate - Riffle BF Width (ft) BF Mean Depth (ft) BF Max BF	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 59 1 - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 4.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.0 1 - 1.1 1 - 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 27.1 43.8 43.8 60.51 16.7 2 20.0000 0.0032 0.0032 0.0064 0.0032 2 5.68 11.56 11.70 17.29 4.70 3 21.23 42.9 38.02 69.37 20 3	Min Mean Med Max SD n	Min Mean Med Max SD - 62 1.0 1.0 1.0 1.0 1.0 1.1 1.2 1.3 31.5 20.34 58.68 19.4 15.33 31.5 20.34 58.68 19.4 15.34 44 34.6 6.5 51.6 65.5 15.6
BEHI VLS / LS / MS / HS / FV / VHS / FS / ES / Channel Stability or Habitan Meric Biological or Other Biological Other Biol	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.1 1 - 28.5 1 - 1.2 - 1 - 2.3 1 - 1.4 1 - 2.5 1 - 1.5 - 1 - 2.7	Min Mean Med Max SD n	Min Mean Med Max SD - 62 1.0 1.0 1.0 1.0 1.0 1.1 1.0
BEHI VLSs / LSs / M8s / H8s / VHFs / EPs / Channel Stability or Habitan Metric Biological or Other W. W.A., D.E. Wise, M.A. Walker, R. Morris, M.A. Canteell, M. Chemmens, G.D. Jennis ter USGS Gauge BF Wist Depth (ft) BF Man Depth (ft) BR Man Depth (ft) Channel Beltwidth (ft) Radius of Curvature (ft) Re:Bankfull width (ft)ft) Meander Wavelength (ft) Meander Wavelength (ft) Pool Man Depth (ft) Pool Volume (ft') SC% / Sa% (G% 18% 18% 18% 18% 18% 18% 18% 18% 18% 18	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.1 1 - 28.5 1 - 1.2 - 1 - 2.3 1 - 1.4 1 - 2.5 1 - 1.5 - 1 - 2.7	Min Mean Med Max SD n	Min Mean Med Max SD - 62 10.060 10.0 10.0 11.0 3.8 9.9 11.1 -
BEHI VLS / LS / MS / HS / VFHS / ES / Channel Stability or Habitan Meric Biological or Other B. W.A., D.E. Wess, M.A. Walker, R. Merris, M.A. Cantrell, M. Clemmens, G.D. Jennis B. W.A., D.E. Wess, M.A. Walker, R. Merris, M.A. Cantrell, M. Clemmens, G.D. Jennis B. W.A., D.E. Wess, M.A. Walker, R. Merris, M.A. Cantrell, M. Clemmens, G.D. Jennis B. W. Walker, R. Merris, M.A. Cantrell, M. Clemmens, G.D. Jennis B. W. Walker, M. Merris, M.A. Cantrell, M. Clemmens, G.D. Jennis B. W. Walker, M. M. L.	Regional Curve Interval NC Min /NC Pied. Rural 5.3	Pre-Existing Condition ¹	Reference Reach Data	Design D	Name	My1 Min Mean Med Max SD n - 28.1 1 - 0.70 1 - 1.1 1 - 8.5 1 - 1.0 1 - 1.0 1 - 1.1 1 - 28.5 1 - 1.2 - 1 - 2.3 1 - 1.4 1 - 2.5 1 - 1.5 - 1 - 2.7	Min Mean Med Max SD n	Min Mean Med Max SD - 62 10.060 10.0 11.0 3.8 9.9 11.1

1.5 0.0043 0.004

MICHAEL BAKER ENGINEERING, INC. MY3 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification BF Velocity (fps) BF Discharge (cfs)

Table 10. Monitoring Year 3 Stream Summary

Logan Creek Restoration Project; DMS Project ID No. 94645

Logan Creek Restoration Project; DMS Project ID No. 94645																								
UT6																								
Parameter USGS Gauge	Regional Curve Interval	ı¹	Pre-Existing Condition	n¹		Reference Rea				Design			As-built				MY1			MY2			MY3	
Dimension and Substrate - Riffle	NC Mtn./NC Pied. Rur	al Min M	Iean Med Max	SD n	Min M	Morgan C Mean Med M		Min	Mean	Med Max S	D n Min	Mean	Med Max	SD n	Min	Mean Med	Max SD	n	Min Mean	Med Max	SD n	Min Mea	n Med	Max SD n
BF Width (ft) -	5.3 4.1					16.7 -		-	6.0		- 6.1	6.2	6.2 6.3	0.06 2	-	5.8 -		1	- 5.8		- 1	- 6.0	-	1
Floodprone Width (ft) - BF Mean Depth (ft) -	0.4 0.5					35.0 - 1.06 -		-	0.7		- 0.70	>27	0.70 0.80	0.02 2.00		32.4 - 0.70 -		1	- >35 - 0.60		- 1			1 - 1
BF Max Depth (ft)					- 1.	1.54 -		-			- 1.1	1.2	1.2 1.2	0.0 2	-	0.9 -		1	- 0.9		- 1	- 0.9	-	1
BF Cross-sectional Area (ft²) - Width/Depth Ratio -	1.9 4.1					17.7 -		-	4.2		- 4.5 - 8.1					3.8 - 9.0 -		1	- 3.7 - 9.1		- 1			1
Entrenchment Ratio -					- 2	2.0 -		-	-		- 4.3	5.5	5.5 6.6	1.2 2	-	5.6 -		1	- 5.4		- 1	- 4.9	-	1
Bank Height Ratio -					- 1	1.2 -		-	-		- 1.0		1.0 1.0	0.0 2		1.0 -		1	- 1.0		- 1			1
Pattern d50 (mm) -					-	-	- - -	-	- 1	- - -		-			-	- -		1		- -	- 1			1
Channel Beltwidth (ft)						80 -		-	-			-						-					-	
Radius of Curvature (ft) - Re:Bankfull width (ft/ft) -						23 -		-	-			-						-					-	
Meander Wavelength (ft)					- 1	150 -		-	-			-						-					-	
Meander Width Ratio - Profile				I - I -	- 4	4.8 -		-	-			-			-			-						
Riffle Length (ft)				T - T -	- 1	- -	- - -	12.0	31.8	19.0 77.0 26	.3 4 14.3	18.7	14.9 30.5	6.9 4	17.81	27.00 27.03	36.25 9.2 2 0.0090 0.0038	2	27.5 31	31 34.5	3.5 2	35.17 35.4	4 35.38	35.58 0.2 2
Riffle Slope (ft/ft) -										0.0106 0.017 0.00			0.0118 0.0140						0.0029 0.0033	0.0033 0.003	6 0.0004 2			0.0028 0.0007 2
Pool Length (ft) - Pool Spacing (ft) -						75 -		18.0	6.0	24.0 26.0 3		11.6 39.0		5.7 5 10.2 4		26.73 26.73 42.9 42.9	33.70 7.0 46.34 3.4	2	9.40 16.30 45.6 46.85	16.30 23.20 46.85 48.1				16.26 6.8 2 48.94 1 2
Pool Max Depth (ft)								-	1.2		- 1.7					1.5		-	- 1.17			- 0.73		
Pool Volume (ft³)					-			-	-			-			-			-					-	
Substrate and Transport Parameters Ri% / Ru% / P% / G% / S% -			. . .	T - I -	- 1	- -		- 1	- 1	- -		1 - 1	- 1 -	I - I -	- 1		T - T -	-	- 1 -	T - I -		1 - 1 -		
SC% / Sa% / G% / B% / Be% -					1 -			-	-			-						-				1 - 1 -		
d16 / d35 / d50 / d84 / d95 -					-						-	-			-			-					-	
Reach Shear Stress (competency) lb/F - Max part size (mm) mobilized at bankfull (Rosgen Curve) -								-	-		 	-					+	1 -				+ - + -	+ - +	
BF Mean Depth (ft)	0.4 0.5					1.06 -		-	0.7						- 1			-	- 0.70		- 1			1
BF Max Depth (ft) - BF Cross-sectional Area (ft²) -	1.9 0402		- 0.02 -	1 - 1		1.54 -		-	4.2			-	0.02	1 - 1	-	- 0.02 -		-	- 1.4	.02	- 1	- 1.2	0.02 -	1
Width/Depth Ratio -			- 0.02		- 1	15.8 -		-	7.2						-	- <5% -		-	- 11.0 <	5%	- 1	- 12.3	2 <5% -	1
Entrenchment Ratio - Bank Height Ratio -					- 2	2.0 -		-	-		- -	-			-	- E -		-	- 5.3 - 1.0 3	E	- 1 - 1	- 5.1	E -	1
d50 (mm)						1.2 -		-				-				- 15.2 -		-		5.2	- 1		15.2	1
Pattern: reach is to short for this data.																								
Channel Beltwidth (ft) - Radius of Curvature (ft) -						80 -		-	-			-			-	104		-		04 -			104	
Rc:Bankfull width (ft/ft) -					- 1.	1.38 -		-	-			-			-	- 1.04 -		-		.04			0.0114	
Meander Wavelength (ft) - Meander Width Ratio -						150 -		-	-			-	-		-			-	-				-	
Profile: reach is to short for this data.					- 4	4.8		-	-			-			-			-					-	
Riffle Length (ft)					-			12.0	31.8	19.0 77.0 26		-			-			-					-	
Riffle Slope (ft/ft) 1. Harman, W.A., D.E Wise, M.A. Walker, R. Morris, MA Califold, MC 825 Mables, G.D. Jennings,	D.P. Clinton I.M. Buttomore 2000. I			A WIR A Comformer Brookedings		0.019 -			0.0107 ents. Andhorage, A	0.0106 0.017 0.0	141 4 -	-			- 1			-						
Pool Spacing (ft) -		Sankfull Regional Curves for No	orin Carolina Mountain Streams. In:		- 1	75 -		18.0	22.7	24.0 26.0 3	4 3 -	-			-			-					-	
Pool Spacing (ft) - Pool Max Depth (ft) - Pool Volume (ft') -			orth Carolina Mountain Streams. in:		- 1 - 2	75 - 2.28 -		18.0	22.7 1.2	24.0 26.0 3	4 3 -				-			-						
Pool Spacing (ft) -	Regional Curve Interval	1 1	Pre-Existing Conditio		- 2	75 - 2.28 - Reference Rea	each Data	18.0	22.7	24.0 26.0 3. Design	4 3 -	-	As-built		-		MY1	-	· ·	MY2			MY3	
Pool Spacing (ft)	<u> </u>				- 2	75	each Data	18.0	22.7	24.0 26.0 3.	4 3 -	-	As-built		- - -		MY1	-		MY2			MY3	
Pool Spacing (ft) Pool Spacing (ft)	Regional Curve Interva				- 2	75 - 2.28 - Reference Rea	each Data	18.0	22.7	24.0 26.0 3.	4 3 -	-	As-built		-		MYI			MY2			MY3	
Pool Spacing (ft)	Regional Curve Interva				- 2	75 - 2.28 - Reference Rea	each Data		22.7	24.0 26.0 3.	4 3 -		As-built		-		MYI	-		MY2			MY3	
Pool Spacing (ft) - Prool Max Depth (ft) - Prool Max Depth (ft) - Pool Volume (It') Suphingig and Transport Parameters R2% / Ru% / P% / G% / S% - SC% / Sa% / G% / B% / Daw - d16 / d35 / d30 / d84 / d95 - Reach Shear Stress (competency) lbf	Regional Curve Interva				- 2	75	each Data		22.7	24.0 26.0 3.	4 3 -	-	As-built		-		MY1	-		MY2			MY3	
Pool Spacing (ft) Fool shas Depth (ft) Fool shas Depth (ft) Fool volume (ft') Supplicate and Transport Parameters R2% / Ra% / P% / P% / P% / P% / P% Gage SCM: / Sa% / P% / P8 / P8 / P8 / P8 / P8 / P8 / P	Regional Curve Interva				- 2	75 - 2.28 - Reference Rea	each Data		22.7	24.0 26.0 3.	4 3 -	-	As-built				MY1			MY2			MY3	
Pool Spacing (ft) Frod Max Depth (ft) Fool Nax Depth (ft) Fool No Logarity Fool Volume (ft) See See Code (Max Depth (ft) See See Code (Max Depth (ft)) Reach Shear Stress (competency) lof Max part size (mm) mobilized at lenkfull (Rosen Curve) Stream Power (transport capacity) Wint Additional Reach Parameters	Regional Curve Interva				- 2	75	each Data		22.7	24.0 26.0 3.	4 3 -	-	As-built				MYI	-		MY2			MY3	
Pool Spacing (ft) Frod Max Depth (ft) Frod Nax Depth (ft) Fool No Logarity Fool Volume (ft) Self-Age (76% / 5%) Self-Age (76% / 5%) Reach Shear Stress (competency) lbf Max part size (mm) mobilized at hankfull (Rospen Curve) Stream Power (transport capacity) Wint Additional Reach Parameters Impervious cover estimate (%) Rospen Classification BF Velocity (fns)	Regional Curve Interva				- 2	75 Reference Rea Morgan C	each Data		22.7	24.0 26.0 3.		-	As-built				MY1	-		MY2			MY3	
Pool Spacing (ft) Pool Spacing (ft) Pool Spacing (ft) Pool Volume (if') Pool Volume (if') Pool Volume (if') Spiphikate, and Transport Parameters R(% / Ru% / P% / G% / S% SCM, SSM, CGM, Upod dif / d35 / d36 / d36 / d95 Reach Shear Stress (competency) lb/f Max part size (mm) mobilized at bankfull (Rosgen Curve) Stream Power (transport capacity) W/m² Additional Reach Parameters Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification Rosgen Classification	Regional Curve Interva				- 2	75	each Data	18.0	22.7	24.0 26.0 3.		-	As-built				MYI	-		MV2			MY3	
Pool Spacing (ft) Frod Max Depth (ft) Frod Nax Depth (ft) Fool No Logarity Fool Volume (ft) Self-Age (76% / 5%) Self-Age (76% / 5%) Reach Shear Stress (competency) lbf Max part size (mm) mobilized at hankfull (Rospen Curve) Stream Power (transport capacity) Wint Additional Reach Parameters Impervious cover estimate (%) Rospen Classification BF Velocity (fns)	Regional Curve Interva				- 2	75 Reference Rea Morgan C	each Data	18.0	22.7	24.0 26.0 3.		-	As-built				MY1			MV2			MY3	
Pool Spacing (ft) Figul State Community Fig	Regional Curve Interva				- 2	75	each Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Frod Max Depth (ft) Frod Nax Depth (ft) Fool No Logarity Fool Volume (ft) Self-Agol (76% / 5%) Self-Agol (76% / 5%) Read-New Self-(76% / 6%) Read-Shear Stress (competency) lbr I Max part size (mm) mobilized at hankfull (Rosgen Curve) Stream Power (transport capacity) Wird Additional Reach Parameters Impervious cover estimate (%) Rosgen Classification BF Velocity (ftps) BF Discharge (cfs) Simusity Water Surface Slope (Channel) (ft/ft) Water Surface Slope (Channel) (ft/ft) Water Surface Slope (Channel) (ft/ft)	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 118.3				- 2 - 2 - 0 - 0 - 0 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	75 Reference Rea Morgan C	each Data	18.0	22.7	24.0 26.0 3.			As-built				MYI						MY3	
Pool Spacing (ft) Frod Max Depth (ft) Fight Refe, and Transport Parameters Refe, Refe, Perk, (26), (58), Gauge Refe, Reach Shear Stress (competency) lbr J. Max part size (mm) mobilized at lankfull (Rosgen Curve) Stream Power (transport capacity) Wird Additional Reach Parameters Impervious cover estimate (%). Rosgen Classification BF Velocity (ftps) BF Discharge (cfs) 35 Channel length (ft) Water Surface Slope (Channel) (ft/ft) BF slope (ft/ft)	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 118.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	each Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Fool Max Depth (ft) Fool Max Depth (ft) Fool Was Depth (ft) Fool Was Depth (ft) Fool Volume (ft) Fool Volume (ft) Stream Fool Volume (ft) Max part size (mm) mobilized a bankfull (Rosgen Curve) Stream Fower (transport capacity) W/m² Additional Reach Parameters Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification BF Velocity (fps) BF Discharge (cfs) Channel length (ft) Water Surface Slope (Channel) (ft/ft) BF Slope (ft/ft) Water Surface Slope (Channel) (ft/ft) BF Slope (ft/ft) BF Slope (ft/ft)	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7 1.2 - - - - - - - - - - - - - - - - - - -	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Frod shas Depth (ft) Fool that Depth (ft) Full Miles and Transport Parameters Ri% / Ru% / Pg% / Cg% / Ps% Gauge Ri% / Ru% / Pg% / Cg% / Ps% Gauge Ri% / Ru% / Pg% / Cg% / Ps% Gauge Ricals Shear Stress (competency) lbf - Max part size (mm) mobilized at bankfull (Rosen Curve) Stream Power (transport capacity) Wim' Additional Reach Parameters Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification BF Velocity (fps) BF Discharge (cfs) 35 Channel length (ft) Water Surface Slope (Channel) (ft/ft) Bankfull Flod Slope (Mn) Bankfull Flod Slope (Mn) Beankfull Flod Slope (Mn) BEH VLS% / L8% / Mg% / Hg% / VH% / Fg%	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool No Loght (ft) Pool No College (ft) Right/Refe, and Transport Parameters Right/Refe, / (76), / (76), / (76), / (76) Right/Refe, / (76), /	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7 1.2	24.0 26.0 3.	4 3		As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool No Loght (ft) Pool No College (ft) Right/Refe, and Transport Parameters Right/Refe, / (76), / (76), / (76), / (76) Right/Refe, / (76), /	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool No Loght (ft) Pool No College (ft) Right/Refe, and Transport Parameters Right/Refe, / (76), / (76), / (76), / (76) Right/Refe, / (76), /	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Not Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Pool Volume (ft) Sec. Case. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Cyc. Sec. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cy	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.	4 3 - 4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Not Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Pool Volume (ft) Sec. Case. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Cyc. Sec. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cy	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.	4 3		As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Not Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Pool Volume (ft) Sec. Case. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Cyc. Sec. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cy	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Volume (ft) Pool Volume (ft) Pool Volume (ft) Ribhattele and Transport Parameters Ribhattele and Transport Parameters Ribhattele and Transport Parameters Reach Shear Stress (competency) lof' and the strength of the	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.	4 3		As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Not Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Pool Volume (ft) Sec. Case. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Cyc. Sec. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cy	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.	4 3		As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Volume (ft) Pool Volume (ft) Pool Volume (ft) Ribhattele and Transport Parameters Ribhattele and Transport Parameters Ribhattele and Transport Parameters Reach Shear Stress (competency) lof' and the strength of the	Regional Curve Interval NC Mm./NC Pied. Rur 7.8 18.3				- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						MY3	
Pool Spacing (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Volume (ft) Pool Volume (ft) Pool Volume (ft) Ribharder and Transport Parameters Ribharder (ft) Ribharder and Transport Parameters Ribharder (ft) Ribharder (ft) Reach Shear Stress (competency) loft Max part size (mm) mobilized at bankfull (Rospen Curve) Stream Fower (transport capacity) Wird Additional Reach Parameters Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification BF Velocity (fps BF Discharge (cfs) 35 Channel length (ft) Smuosity Water Surface Slope (Channel) (ft/ft) Bankfull Floodplain Area (area) BEH VLyb (1.1s/ Myb / Hyb / VHb/ / Ft) Channel Shability or Habatta Metric Channel Shability or Habatta Metric	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7 1.2	24.0 26.0 3.			As-built				MY1						0.02	
Pool Spacing (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Volume (ft) Pool Volume (ft) Pool Volume (ft) Ribharder and Transport Parameters Ribharder (ft) Ribharder and Transport Parameters Ribharder (ft) Ribharder (ft) Reach Shear Stress (competency) loft Max part size (mm) mobilized at bankfull (Rospen Curve) Stream Fower (transport capacity) Wird Additional Reach Parameters Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification BF Velocity (fps BF Discharge (cfs) 35 Channel length (ft) Smuosity Water Surface Slope (Channel) (ft/ft) Bankfull Floodplain Area (area) BEH VLyb (1.1s/ Myb / Hyb / VHb/ / Ft) Channel Shability or Habatta Metric Channel Shability or Habatta Metric	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7 1.2	24.0 26.0 3.			As-built				MY1						0.02 0.02 0.02 0.02	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Ribhattele and Transport Parameters Ribhattele and Transport Parameters Ribhattele and	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1						0.02	
Pool Spacing (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Volume (ft) Pool Volume (ft) Pool Volume (ft) Ribharder and Transport Parameters Ribharder (ft) Ribharder and Transport Parameters Ribharder (ft) Ribharder (ft) Reach Shear Stress (competency) loft Max part size (mm) mobilized at bankfull (Rospen Curve) Stream Fower (transport capacity) Wird Additional Reach Parameters Drainage Area (SM) Impervious cover estimate (%) Rosgen Classification BF Velocity (fps BF Discharge (cfs) 35 Channel length (ft) Smuosity Water Surface Slope (Channel) (ft/ft) Bankfull Floodplain Area (area) BEH VLyb (1.1s/ Myb / Hyb / VHb/ / Ft) Channel Shability or Habatta Metric Channel Shability or Habatta Metric	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1			02 556 8 32 552			0.02 <5% E 3.32 15.2	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Nat Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Ribhattele and Transport Parameters Ribhattele and Transport Parameters Ribhattele and	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1			02 5% E			0.02 <5% E	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Not Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Pool Volume (ft) Sec. Case. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Cyc. Sec. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cy	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1			02 575 6 2 7 3 7 4 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			0.02 <5% E 3.32 15.2 104	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool No Loght (ft) Pool No College (ft) Right/Refe, and Transport Parameters Right/Refe, / (76), / (76), / (76), / (76) Right/Refe, / (76), /	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1			02 5% E 32 5.2 1 1 04 04			0.02 	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool No Loght (ft) Pool No College (ft) Right/Refe, and Transport Parameters Right/Refe, / (76), / (76), / (76), / (76) Right/Refe, / (76), /	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1			02 5% E 32 5.2 1 1 04 04			0.02 	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool Not Depth (ft) Pool Not Depth (ft) Pool Volume (ft) Pool Volume (ft) Sec. Case. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cyc. Sec. Cycle (Jew. Cyc. Sec. Cyc. Cyc. Sec. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cyc. Cy	Regional Curve Interva NC Mtn/NC Pied. Rur 7.8 18.3		Pre-Existing Condition		- 2 - 0 - 0 - 3 - 3 - 2 - 0 - 0 - 0 - 0	75	ach Data	18.0	22.7	24.0 26.0 3.			As-built				MY1			02 5% E 32 5.2 1 1 04 04			0.02 	
Pool Spacing (ft) Pool Max Depth (ft) Pool Max Depth (ft) Pool No Loght (ft) Pool No College (ft) Right/Refe, and Transport Parameters Right/Refe, / (76), / (76), / (76), / (76) Right/Refe, / (76), /	Regional Curve Interva NC Mtn/NC Pied Rur 7.8 18.3	al	Pre-Existing Condition		- 2 - 2 - 0 - 0 - 3 - 3 - 3 - 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	75	ach Data Creek	18.0	22.7	Design			As-built				MY1			02 5% E 32 5.2 1 1 04 04			0.02 	

Table 11. Morphology and Hydraulic Monitoring Summary Logan Creek Restoration Project: DMS Project ID No. 92515

Content Cont	ogan Creek (4,172 LF)																												
Decision and substrate: Decision Superior Continue Conti																													
Second			Cross-secti	on X-1, Stati	ion 3+10 (R	liffle), Restor	ation Reach			Cross-sect	tion X-2, Sta	tion 3+70 (P	ool), Restora	tion Reach			Cross-secti	on X-3, Stati	on 12+57 (R	liffle), Restor	ration Reach	h		(Cross-section	X-4, Station	13+00 (Poo	1)	
BP Walth (18) 241 240 241 240 259 2-88 2-0 2-60 252 243 3-4-6 2-3 276 271 271 274 274 346 BP Man Papel (19) 2-6 2-7 2-7 1	imension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
B Wash fill 241 240 241 240 241 240 241 240 241 240 241 240 241 240 241 240 241 241 240 241	ased on fixed baseline bankfull elevation																												
Bit Mean Depth (ii) 2		24.1	24.0	24 1	24 0	-	_	_	25.9	26.8	26.0	26.0	_	-	-	25.2	24 3	24.46	24 3	-	_	-	27.6	27.1	27.1	27.4	-	_	T -
Method Depth Ratio 22 93 89 89 9 - - - 105 110 103 102 - - - 120 116 1130 113 - - - 121 100 112 107						 	_						_							_	_	-					_		-
BF Characteristal Area (P. 16) 0. 0.0.4							_																					_	_
## BF Was Depth (17) \$72						+	_													-	_						-		-
With of Floodprox Acad (17)							-													<u> </u>							-		<u> </u>
Enter-character Ratio 2							-														-						-		
Bask Holgh Ratio 10 10 10 10 10 10 10 1	1																				-						-	-	-
Western Permiser (ft) 293 293 294 292 292 294 292 292 293 294 295 294 295 295 295 295 295 286 288 286																					-						-	-	
Hydraulic Radius (ft)						1															-						-	-	-
Based on current/developing bankfull feature BF Width (ft)							-	-	0 017	0 - 1 .					-	-2.10				-	-						-	-	-
BF Width (f)	Hydraulic Radius (ft	2.1	2.1	2.2	2.2	-	-	-	2.1	2.1	2.1	2.1	-	-	-	1.8	1.8	1.8	1.8	-	-	-	2.0	2.3	2.0	2.2	-	-	-
B M Mean Depth (11)	ased on current/developing bankfull feature																												
Width Depth Ratio	BF Width (ft	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BFCross-sectional Area (rf) BF Max Depth (th) BF	BF Mean Depth (ft	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Cross-sectional Area (rf) BF Max Depth (rh) BF Cross-section Max Depth (rh) BF Max Depth (rh) BF Max Depth (rh) BF Cross-section Max Depth (rh) BF Max Depth (rh) BF Cross-section Max Depth (rh) BF Cross-sect	Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	- 1	-	-	-	-
BF Max Depth (f)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
Width of Floodprone Area (ft) - - - - - - - - -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entenchment Ratio		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-
Bank Heigh Ratio		-	-	-	-	-	-	_		-	_	-	_	-	-	-	-	-	-	-	-	_	-	_	- 1	_	_	_	-
Wetted Perimeter (f) - - - - - - - - -		_		-	-	_	-	_	-	_	_		_	-	_	-	-	-		-	_	_	_	-	-		-	_	-
Hydraulic Radius (ft) - - - - - - - - -		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	-	-
Cross Sectional Area between end pins (h²) - - - - - - - - -		_		_	-	_	_		_		_	-		_	_	_	-		_	_			_	_		_	_		_
A	,																												-
Cross-section X-5, Station 25+43 (Pool), Restoration Reach Cross-section X-6, Station 26+09 (Riffle), Restoration Reach Cross-section 10, Station 37+05 (Pool), Enhancement Reach Cross-section 11, Station 37+20 (Riffle), Restoration Reach	1 (12.0					-			-	-	-			-		- 42				-				-	-	-		
Dimension and substrate Base MY1 MY2 MY3 MY4 MY5 MY+ Base MY1 MY2 MY3 MY4 MY5	d50 (mm	13.8	30.7	15.2	23.3	-	-	-	-	-	-	-	-	-	-	19.2	43	29.2	22.2	-	-	-	-	-	-	-	-	-	-
Dimension and substrate Base MY1 MY2 MY3 MY4 MY5 MY+ Base MY1 MY2 MY3 MY4 MY5			0 (W. F. Ct. t	. 25:42.7	D 1) D ((D 1			C	W.C.C.	2(+00 (D	. d (m).	(' D 1			C 1	10.04.4	27:05 (D	I) F I	(D. 1			C	11 04 4	27 - 20 (D:0	0 \ F 1	(D	
Based on fixed baseline bankfull elevation		D						3.637 :								D											, ,		
BF Width (ft) 21.3 24.0 23.9 23.8 23.6 22.6 22.5 22.4 31.0 33.4 33.4 33.3 29.2 33.9 33.9 34.1 BF Mean Depth (ft) 3.0 3.1 3.1 3.0 2.2 2.2 2.3 2.3 2.1 2.1 2.1 2.3 2.1 1.8 1.8 1.7 Width/Depth Ratio From Sectional Area (ft) 63.9 74.3 73.3 71.0 51.7 50.2 51.4 50.8 66.6 71.2 70.3 74.7 60.7 61.8 61.8 59.4 BF Max Depth (ft) 5.4 5.3 5.4 5.4 3.4 3.5 3.7 3.6 3.5 3.5 3.5 3.4 3.5 2.9 3.0 3.0 2.9 Width of Floodprone Area (ft) 80.8 90. 90. 90. 90. 90. 90 95. 95. 95. 95. 95. 95. 95. 95. 95. 95.		Base	MYI	MYZ	MY3	MY4	MYS	MY+	Base	MYI	MYZ	MY3	MY4	MYS	MY+	Base	MYI	MYZ	MY3	MY4	MYS	IVI Y +	Base	MYI	MY2	MY3	MY4	MY5	MY+
BF Mean Depth (ft) 3.0 3.1 3.1 3.0 2.2 2.2 2.3 2.3 2.1 2.1 2.1 2.3 2.1 1.8 1.8 1.7 Width/Depth Ratio 7.1 7.8 7.8 8.0 10.8 10.1 9.9 9.9 14.4 15.6 15.9 14.8 14.0 18.6 18.6 19.6 18.6 19.6 18.6 19.6 18.6 19.6 18.6 19.6 18.6 19.6 18.6 19.6 18.6 19.6 18.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19		21.2				1			20.5	***			•			24.0				•		•	20.2						
Width/Depth Ratio 7.1 7.8 7.8 8.0 - - 10.8 10.1 9.9 9.9 - - - 14.4 15.6 15.9 14.8 - - - 14.0 18.6 18.6 19.6 BF Cross-sectional Area (ft²) 63.9 74.3 73.3 71.0 - - 51.7 50.2 51.4 50.8 - - - 66.6 71.2 70.3 74.7 - - - 60.7 61.8 61.8 59.4 BF Max Depth (ft) 5.4 5.3 5.4 5.4 - - 3.4 3.5 3.7 3.6 - - - 3.5 3.5 3.4 3.5 - - - 2.9 3.0 3.0 2.9 Width of Floodprone Area (ft) >80 >90 >90 - - - >95 >95 >95 - - - >60 >60 >60 >60							-	-						-	-					-	-						-	-	-
BF Cross-sectional Area (ft ²) 63.9 74.3 73.3 71.0 51.7 50.2 51.4 50.8 66.6 71.2 70.3 74.7 60.7 61.8 61.8 59.4 BF Max Depth (ft) 5.4 5.3 5.4 5.4 3.4 3.5 3.7 3.6 3.5 3.5 3.5 3.4 3.5 2.9 3.0 3.0 2.9 Width of Floodprone Area (ft) 4.4 4.4 3.8 3.8 4.0 4.0 4.0 4.2 4.2 4.2 1.8 1.8 1.8 4.5 1.6 1.6 1.6 1.6 1.6						_	-							-	-					-	-						-	-	-
BF Max Depth (ft) 5.4 5.3 5.4 5.4 3.4 3.5 3.7 3.6 3.5 3.5 3.5 3.4 3.5 2.9 3.0 3.0 2.9 Width of Floodprone Area (ft) >80 >90 >90 >90 >95 >95 >95 >95 >95 >60 >60 >60 >60 >60 >54 >54 >54 >54 >54 >54 >54 >54 >54 >54	1					-	-	-					-	-	-					-	-	-					-	-	-
Width of Floodprone Area (ft) >80 >90 >90 >90 - - - >95 >95 >95 >95 - - - >60 >60 >60 >60 - - - - >54 >54 >54 >54 Entrenchment Ratio 4.4 4.4 3.8 3.8 - - - 4.0 4.2 4.2 - - - 4.2 1.8 1.8 1.8 1.8 - - - 4.5 1.6 1.6 1.5 Bank Height Ratio 1.0 1.0 1.0 - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 - - - 1.1 1.2 1.2 1.1 Wetted Perimeter (ft) 27.3 30.2 30.0 29.8 - - - 28.0 27.0 27.1 26.9 - - - 35.2 37.6 37.6 37.8 - - - 33.4 37.6 37.6	BF Cross-sectional Area (ft ²)	63.9				-	-	-	51.7	50.2		50.8	-	-	-	66.6	71.2	70.3		-	-	-	60.7	61.8			-	-	-
Entrenchment Ratio 4.4 4.4 3.8 3.8 3.8 4.0 4.0 4.2 4.2 4.2 1.8 1.8 1.8 4.5 1.6 1.6 1.5 Bank Height Ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	BF Max Depth (ft	5.4	5.3	5.4		-	-	-	3.4		3.7	3.6	-	-	-	3.5	3.5	3.4	3.5	-	-	-	2.9	3.0	3.0		-	-	-
Bank Height Ratio 1.0 1.0 1.0 1.0 1.0 1.0 - - - 1.0	Width of Floodprone Area (ft	>80	>90	>90	>90	-	-	-	>95	>95	>95	>95	-	-	1	>60	>60	>60	>60	-	•	-	>54	>54	>54	>54	-	-	-
Wetted Perimeter (ft) 27.3 30.2 30.0 29.8 - - - 28.0 27.0 27.1 26.9 - - - 35.2 37.6 37.8 - - - 33.4 37.6 37.6 37.6 Hydraulic Radius (ft) 2.3 2.5 2.4 2.4 - - 1.8 1.9 1.9 - - - 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.0 - - - - 1.8 1.6 1.6 1.6	Entrenchment Ratio	4.4	4.4	3.8	3.8	-	-	-	4.0	4.0	4.2	4.2	-	-	-	4.2	1.8	1.8	1.8	-	-	-	4.5	1.6	1.6	1.5		-	-
Hydraulic Radius (ft) 2.3 2.5 2.4 2.4 1.8 1.9 1.9 1.9 1.9 1.9 1.9 2.0 1.8 1.6 1.6 1.6	Bank Height Ratio	1.0	1.0	1.0	1.0	-	-	-	1.0	1.0	1.0	1.0	-	-	-	1.0	1.1	1.0	1.0	-	-	-	1.1	1.2	1.2	1.1	-	-	-
Hydraulic Radius (ft) 2.3 2.5 2.4 2.4 1.8 1.9 1.9 1.9 1.9 1.9 1.9 2.0 1.8 1.6 1.6 1.6	Wetted Perimeter (ft	27.3	30.2	30.0	29.8	-	-	-	28.0	27.0	27.1	26.9	-	-	-	35.2	37.6	37.6	37.8	-	-	-	33.4	37.6	37.6	37.6	-	-	-
Based on current/developing bankfull feature	Hydraulic Radius (ft		2.5	2.4	2.4	-	-	-	1.8	1.9	1.9	1.9	-	-	-	1.9	1.9	1.9	2.0	-	-	-	1.8	1.6	1.6	1.6	-	-	-
2 more on carrier troping summan remark	ased on current/developing bankfull feature																												
BF Width (ft)	RE Width (#					T _					1 -							1 _							T _ I				Τ -
BF Mean Depth (ft)		- -		-	- -	+	 			-	 				-	- -	+ -			-	-			-	 		-		-
Width/Depth Ratio				-			-				-			-			- -			-	-			-	_		-	-	-
				-	-		-				-						-	+			-			_	_		-		
BF Cross-sectional Area (ff ²)		<u> </u>																+			-				+		-	-	-
BF Max Depth (ft)		-					-				1										-						-	-	-
Wild CPL 1 A (O)		-		-	-	_	-				-			-			1	+		-	-			-	_		-	-	-
Width of Floodprone Area (ft)		-		-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-		-	-		-	-	-	-
Entrenchment Ratio		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio	Hydraulic Radius (ft	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio																					· · · · · · · · · · · · · · · · · · ·	_							1
Entrenchment Ratio	Cross Sectional Area between end pins (ft ²)	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-

MICHAEL BAKER ENGINEERING, INC. MY3 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Table 11. Morphology and Hydraulic Monitoring Summary Logan Creek Restoration Project: DMS Project ID No. 92515

		C	ross-section	X-8.5, Static	on 0+60* (Po	ool)			C	ross-section	X-9, Station	0+73* (Riff	fle)															
ension and substrate	Base*	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	M
ed on fixed baseline bankfull elevation																												
BF Width (ft)	-	8.6	8.2	8.9	-	-	-	6.3	5.9	5.8	6.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	T
BF Mean Depth (ft)	-	0.9	0.9	0.9	-	-	-	0.7	0.7	0.7	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	T
Width/Depth Ratio	-	9.4	9.9	9.9	-	-	-	8.7	8.5	8.4	9.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T
BF Cross-sectional Area (ft2)	-	7.9	8.2	8.1	-	-	-	4.5	4.1	4.0	3.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Max Depth (ft)	-	1.5	1.5	1.4	-	-	-	1.2	1.1	1.0	1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width of Floodprone Area (ft)	-	32.0	30.9	30.9	-	-	-	26.8	23.8	22.6	22.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Entrenchment Ratio	-	3.7	3.4	4.5	-	-	-	4.3	4.0	3.9	4.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bank Height Ratio	-	1.1	1.0	1.1	-	-	-	1.0	1.0	1.0	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Wetted Perimeter (ft)	-	10.4	10.0	10.7	-	-	-	7.7	7.3	7.2	7.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Hydraulic Radius (ft)	-	0.8	0.8	0.8	-	-	-	0.6	0.6	0.6	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	
ed on current/developing bankfull feature																												
BF Width (ft)	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	
BF Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	'	-	
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Cross-sectional Area (ft²)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Entrenchment Ratio		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	
Cross Sectional Area between end pins (ft ²)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
d50 (mm)	-			i	_				i		_	_	i –	i		i	_		i –		i	-	_				_	$\overline{}$

UT6 (127 LF)																												-
			Cross-section	n X-7, Statio	n 0+54 (Poc	l)			(Pross-section	X-8, Station	n 0+69 (Riff	le)															
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	9.8	9.2	9.4	9.7	-	-	-	6.1	5.8	5.8	6.0	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
BF Mean Depth (ft)	1.0	0.9	0.8	0.8	-	-	-	0.8	0.7	0.6	0.6	-	-	-		-	-	-	-	-	-	-	-	-	1	-		-
Width/Depth Ratio	9.5	10.7	12.1	11.2	-	-	-	8.1	9.0	9.1	9.5	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
BF Cross-sectional Area (ft²)	10.1	7.9	7.4	7.4	-	-	-	4.6	3.8	3.7	3.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
BF Max Depth (ft)	1.7	1.5	1.2	1.2	-	-	-	1.1	0.9	0.9	0.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Width of Floodprone Area (ft)	> 50	> 50	> 50	> 50	-	-	-	> 35	> 35	> 35	> 35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio	3.8	4.0	3.1	3.3	-	-	-	6.6	5.6	5.4	4.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	1.0	1.1	-	-	-	1.0	1.0	1.0	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Wetted Perimeter (ft)	11.8	10.9	11.0	11.3	-	-	-	7.7	7.1	7.1	7.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Hydraulic Radius (ft)	0.9	0.7	0.7	0.7	-	-	-	0.6	0.5	0.5	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Based on current/developing bankfull feature																												
BF Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	·	-	-	-	-	-	-	-	-	-		-	-	-
BF Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BF Cross-sectional Area (ft²)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Entrenchment Ratio	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
Bank Height Ratio	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	-		-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Cross Sectional Area between end pins (ft ²)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d50 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-

MICHAEL BAKER ENGINEERING, INC. MY3 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515

Table 11. Morphology and Hydraulic Monitoring Summary Logan Creek Restoration Project: DMS Project ID No. 92515

UT8 (45 LF)																												
		C	ross-section 2	X-12, Station	n 0+9.6 (Rif	fle)																						
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	-	-	8.1	8.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Mean Depth (ft)	-	-	0.7	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width/Depth Ratio	-	-	11.0	12.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Cross-sectional Area (ft²)	-	-	6.0	5.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Max Depth (ft)	-	-	1.4	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width of Floodprone Area (ft)		-	> 50	> 50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio		-	5.3	5.1	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
Bank Height Ratio	-	-	1.0	1.0	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-	
Wetted Perimeter (ft)	-	-	9.6	9.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Hydraulic Radius (ft)	-	-	0.6	0.6	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	
Based on current/developing bankfull feature																												
BF Width (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
BF Mean Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width/Depth Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	- '	-
BF Cross-sectional Area (ft²)	-	-	-	-	-	-	-	-	-	-	-	-	-	·	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BF Max Depth (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Width of Floodprone Area (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Entrenchment Ratio		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bank Height Ratio	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Wetted Perimeter (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydraulic Radius (ft)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cross Sectional Area between end pins (ft ²)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
d50 (mm)	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-

MICHAEL BAKER ENGINEERING, INC. MY3 REPORT LOGAN CREEK STREAM RESTORATION PROJECT DMS PROJECT NO. 92515